SEARCH

SEARCH BY CITATION

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796815.
  • Aragon, T., van Anken, E., Pincus, D., Serafimova, I.M., Korennykh, A.V., Rubio, C.A. and Walter, P. (2009) Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 457, 736739.
  • Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana, C., Mehrnia, M., Zanor, M.I., Kohler, B. and Mueller-Roeber, B. (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 62, 250264.
  • Banno, H., Ikeda, Y., Niu, Q.W. and Chua, N.H. (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell, 13, 26092618.
  • Bu, Q., Jiang, H., Li, C.B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q. and Li, C. (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 18, 756767.
  • Calfon, M., Zeng, H.Q., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G. and Ron, D. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP–1 mRNA. Nature, 415, 9296.
  • Che, P., Bussell, J.D., Zhou, W.X., Estavillo, G.M., Pogson, B.J. and Smith, S.M. (2010) Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci. Signal. 3, ra69.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Cox, J.S., Shamu, C.E. and Walter, P. (1993) Transcriptional induction of genes encoding endoplasmic-reticulum resident proteins requires a transmembrane protein kinase. Cell, 73, 11971206.
  • Day, I.S., Reddy, V.S., Shad, A.G. and Reddy, A.S. (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol. 3, RESEARCH0056.
  • Denecke, J., Goldman, M.H.S., Demolder, J., Seurinck, J. and Botterman, J. (1991) The tobacco luminal binding-protein is encoded by a multigene family. Plant Cell, 3, 10251035.
  • Deng, Y., Humbert, S., Liu, J.X., Srivastava, R., Rothstein, S.J. and Howell, S.H. (2011) Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc. Natl Acad. Sci. USA, 108, 72477252.
  • Duval, M., Hsieh, T.F., Kim, S.Y. and Thomas, T.L. (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50, 237248.
  • Ernst, H.A., Olsen, A.N., Skriver, K., Larsen, S. and Leggio, L.L. (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5, 297303.
  • Faria, J.A.Q.A., Reis, P.A.B., Reis, M.T.B., Rosado, G.L., Pinheiro, G.L., Mendes, G.C. and Fontes, E.P.B. (2011) The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress- and osmotic stress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biol. 11, 129.
  • Fordyce, P.M., Pincus, D., Kimmig, P., Nelson, C.S., El–Samad, H., Walter, P. and DeRisi, J.L. (2012) Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses. Proc. Natl Acad. Sci. USA, 109, 30843093.
  • Harding, H.P., Zhang, Y.H. and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397, 271274.
  • Hayashi, S., Wakasa, Y., Takahashi, H., Kawakatsu, T. and Takaiwa, F. (2012) Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J. 69, 946956.
  • Hayashi, S., Takahashi, H., Wakasa, Y., Kawakatsu, T. and Takaiwa, F. (2013) Identification of a cis-element that mediates multiple pathways of the endoplasmic reticulum stress response in rice. Plant J. 74, 248257.
  • Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P. and Laing, W.A. (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 1, 13.
  • Hibara, K.I., Karim, M.R., Takada, S., Taoka, K., Furutani, M., Aida, M. and Tasaka, M. (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell, 18, 29462957.
  • Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297300.
  • Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J. and Nakai, K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585W587.
  • Hu, H.H., Dai, M.Q., Yao, J.L., Xiao, B.Z., Li, X.H., Zhang, Q.F. and Xiong, L.Z. (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl Acad. Sci. USA, 103, 1298712992.
  • Iwata, Y. and Koizumi, N. (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc. Natl Acad. Sci. USA, 102, 52805285.
  • Iwata, Y. and Koizumi, N. (2012) Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci. 17, 720727.
  • Iwata, Y., Fedoroff, N.V. and Koizumi, N. (2008) Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell, 20, 31073121.
  • Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106111.
  • Jelitto-Van Dooren, E., Vidal, S. and Denecke, J. (1999) Anticipating endoplasmic reticulum stress: a novel early response before pathogenesis-related gene induction. Plant Cell, 11, 19351943.
  • Kamauchi, S., Nakatani, H., Nakano, C. and Urade, R. (2005) Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J. 272, 34613476.
  • Kim, M.J., Kim, H., Shin, J.S., Chung, C.H., Ohlrogge, J.B. and Suh, M.C. (2006a) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′–UTR intron. Mol. Genet. Genomics, 276, 351368.
  • Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.H. and Park, C.M. (2006b) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell, 18, 31323144.
  • Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae, M., Yoon, H.K. and Park, C.M. (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res. 35, 203213.
  • Kokame, K., Kato, H. and Miyata, T. (2001) Identification of ERSE–II, a new cis-actin element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276, 91999205.
  • Korennykh, A.V., Egea, P.F., Korostelev, A.A., Finer-Moore, J., Zhang, C., Shokat, K.M., Stroud, R.M. and Walter, P. (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature, 457, 687693.
  • Lee, S., Seo, P.J., Lee, H.J. and Park, C.M. (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J. 70, 831844.
  • Li, G., Wang, Z.-J. and Cui, S.J. (2009) Site-directed mutagenesis of Arabidopsis calmodulin isoform 2 and its application in detecting calcium-independent calmodulin-binding proteins. Prog. Biochem. Biophys. 36, 890896.
  • Liu, J.X. and Howell, S.H. (2010a) bZIP28 and NF–Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell, 22, 782796.
  • Liu, J.X. and Howell, S.H. (2010b) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell, 22, 29302942.
  • Liu, J.X., Srivastava, R., Che, P. and Howell, S.H. (2007a) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell, 19, 41114119.
  • Liu, J.X., Srivastava, R., Che, P. and Howell, S.H. (2007b) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic stress signaling. Plant J. 51, 897909.
  • Lu, S.J., Yang, Z.T., Sun, L., Sun, L., Song, Z.T. and Liu, J.X. (2012) Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol. Plant, 5, 504514.
  • Martinez, I.M. and Chrispeels, M.J. (2003) Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell, 15, 561576.
  • Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell, 19, 270280.
  • Moreno, A.A., Mukhtar, M.S., Blanco, F. et al. (2012) IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS ONE, 7, e31944.
  • Mori, K., Ma, W.Z., Gething, M.J. and Sambrook, J. (1993) A transmembrane protein with a CDC2+/CDC28-related kinase-activity is required for signaling from the ER to the nucleus. Cell, 74, 743756.
  • Mori, K., Kawahara, T., Yoshida, H., Yanagi, H. and Yura, T. (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells, 1, 803817.
  • Nagashima, Y., Mishiba, K.I., Suzuki, E., Shimada, Y., Iwata, Y. and Koizumi, N. (2011) Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci. Rep. 1, 29.
  • Nakashima, K., Tran, L.S.P., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617630.
  • Noh, S.J., Kwon, C.S., Oh, D.H., Moon, J.S. and Chung, W.I. (2003) Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene, 311, 8191.
  • Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K., Kondoh, H., Ooka, H. and Kikuchi, S. (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene, 465, 3044.
  • Oh, D.H., Kwon, C.S., Sano, H., Chung, W. and Koizumi, N. (2003) Conservation between animals and plants of the cis-acting element involved in the unfolded protein response. Biochem. Biophy. Res. Commun. 301, 225230.
  • Olsen, A.N., Ernst, H.A., Lo Leggio, L. and Skriver, K. (2005a) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 7987.
  • Olsen, A.N., Ernst, H.A., Lo Leggio, L. and Skriver, K. (2005b) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci. 169, 785797.
  • Ovadia, A., Tabibian-Keissar, H., Cohen, Y. and Kenigsbuch, D. (2010) The 5' UTR of CCA1 includes an autoregulatory cis-element that segregates between light and circadian regulation of CCA1 and LHY. Plant Mol. Biol. 72, 659671.
  • Schroder, M. and Kaufman, R.J. (2005) The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739789.
  • Shen, X.H., Ellis, R.E., Lee, K. et al. (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell, 107, 893903.
  • Sidrauski, C. and Walter, P. (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell, 90, 10311039.
  • Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85, 159170.
  • Srivastava, R., Chen, Y., Deng, Y., Brandizzi, F. and Howell, S.H. (2012) Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions. Plant J. 70, 10331042.
  • Sun, L., Lu, S.J., Zhang, S.S., Zhou, S.F., Sun, L. and Liu, J.X. (2013) The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis. Mol. Plant. doi: 10.1093/mp/sst1059.
  • Tajima, H., Iwata, Y., Iwano, M., Takayama, S. and Koizumi, N. (2008) Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response. Biochem. Biophys. Res. Commun. 374, 242247.
  • Takada, S., Hibara, K., Ishida, T. and Tasaka, M. (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128, 11271135.
  • Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16, 24812498.
  • Vroemen, C.W., Mordhorst, A.P., Albrecht, C., Kwaaitaal, M. and de Vries, S.C. (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 15, 15631577.
  • Wang, Y., Shen, J.S., Arenzana, N., Tirasophon, W., Kaufman, R.J. and Prywes, R. (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 2701327020.
  • Wu, Y., Deng, Z., Lai, J. et al. (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 19, 12791290.
  • Xie, Q., Frugis, G., Colgan, D. and Chua, N.H. (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 30243036.
  • Yamaguchi, M., Ohtani, M., Mitsuda, N., Kubo, M., Ohme-Takagi, M., Fukuda, H. and Demura, T. (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell, 22, 12491263.
  • Yang, S.D., Seo, P.J., Yoon, H.K. and Park, C.M. (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell, 23, 21552168.
  • Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S. and Goldstein, J.L. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell, 6, 13551364.
  • Yoshida, H., Haze, K., Yanagi, H., Yura, T. and Mori, K. (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins – involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 3374133749.
  • Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M. and Mori, K. (2000) ATF6 activated by proteolysis binds in the presence of NF–Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 67556767.
  • Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M. and Mori, K. (2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF–Y (CBF) and activating transcription factors 6α and 6β that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21, 12391248.