SEARCH

SEARCH BY CITATION

References

  • Al-Shahrour, F., Minguez, P., Tarraga, J., Montaner, D., Alloza, E., Vaquerizas, J.M., Conde, L., Blaschke, C., Vera, J. and Dopazo, J. (2006) BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res. 34, W472W476.
  • Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J. and Leon, P. (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14, 20852096.
  • Ashburner, M., Ball, C.A., Blake, J.A. et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 2529.
  • Baena-Gonzalez, E., Rolland, F., Thevelein, J.M. and Sheen, J. (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature, 448, 938942.
  • Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M. and Sherlock, G. (2004) GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 20, 37103715.
  • Caspar, T., Lin, T.P., Kakefuda, G., Benbow, L., Preiss, J. and Somerville, C. (1991) Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 95, 11811188.
  • Castelli, F., Contillo, R. and Miceli, F. (1996) Non-destructive determination of leaf chlorophyll content in four crop species. J. Agron. Crop Sci. 177, 275283.
  • Castells, E., Portoles, S., Huang, W. and Mas, P. (2010) A functional connection between the clock component TOC1 and abscisic acid signaling pathways. Plant Signal. Behav. 5, 409411.
  • Chaves, M.M. and Oliveira, M.M. (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55, 23652384.
  • Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A. and Harmer, S.L. (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130.
  • Dalchau, N., Baek, S.J., Briggs, H.M. et al. (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc. Natl Acad. Sci. USA, 108, 51045109.
  • Davis, S.J. and Millar, A.J. (2001) Watching the hands of the Arabidopsis biological clock. Genome Biol. 2, 1008.11008.4 (reviews).
  • Ding, Z., Millar, A.J., Davis, A.M. and Davis, S.J. (2007) TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. Plant Cell, 19, 15221536.
  • Dodd, A.N., Salathia, N., Hall, A., Kevei, E., Toth, R., Nagy, F., Hibberd, J.M., Millar, A.J. and Webb, A.A. (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science, 309, 630633.
  • Dodd, A.N., Gardner, M.J., Hotta, C.T. et al. (2007) The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science, 318, 17891792.
  • Domagalska, M.A., Sarnowska, E., Nagy, F. and Davis, S.J. (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS ONE, 5, e14012.
  • Duc, C., Cellier, F., Lobreaux, S., Briat, J.F. and Gaymard, F. (2009) Regulation of iron homeostasis in Arabidopsis thaliana by the clock regulator time for coffee. J. Biol. Chem. 284, 3627136281.
  • Eimert, K., Wang, S.M., Lue, W.L. and Chen, J.C. (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell, 7, 17031712.
  • Ernst, A.M., Jekat, S.B., Zielonka, S., Müller, B., Neumann, U., Rüping, B., Twyman, R.M., Krzyzanek, V., Prüfer, D. and Noll, G.A. (2012) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proc. Natl Acad. Sci. USA, 109, E1980E1989.
  • Farre, E.M. and Weise, S.E. (2012) The interactions between the circadian clock and primary metabolism. Curr. Opin. Plant Biol. 15, 293300.
  • Fernie, A.R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., Carroll, A.J., Saito, K., Fraser, P.D. and DeLuca, V. (2011) Recommendations for reporting metabolite data. Plant Cell, 23, 24772482.
  • Fukushima, A., Kusano, M., Nakamichi, N., Kobayashi, M., Hayashi, N., Sakakibara, H., Mizuno, T. and Saito, K. (2009) Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc. Natl Acad. Sci. USA, 106, 72517256.
  • Graf, A. and Smith, A.M. (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci. 16, 169175.
  • Graf, A., Schlereth, A., Stitt, M. and Smith, A.M. (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc. Natl Acad. Sci. USA, 107, 94589463.
  • Hall, A., Bastow, R.M., Davis, S.J. et al. (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell, 15, 27192729.
  • Hanano, S., Domagalska, M.A., Nagy, F. and Davis, S.J. (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells, 11, 13811392.
  • Hanano, S., Stracke, R., Jakoby, M., Merkle, T., Domagalska, M.A., Weisshaar, B. and Davis, S.J. (2008) A systematic survey in Arabidopsis thaliana of transcription factors that modulate circadian parameters. BMC Genomics, 9, 182.
  • Harmer, S.L. (2009) The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357377.
  • Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A. and Kay, S.A. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290, 21102113.
  • Herrero, E. and Davis, S.J. (2012) Time for a nuclear meeting: protein trafficking and chromatin dynamics intersect in the plant circadian system. Mol. Plant, 5, 554565.
  • Huang, D.W., Sherman, B.T., Zheng, X., Yang, J., Imamichi, T., Stephens, R. and Lempicki, R.A. (2009) Extracting biological meaning from large gene lists with DAVID. Curr. Protoc. Bioinformatics, Chapter 13, Unit 13.11.
  • Hummel, E., Osterrieder, A., Robinson, D.G. and Hawes, C. (2010) Inhibition of Golgi function causes plastid starch accumulation. J. Exp. Bot. 61, 26032614.
  • Izawa, T., Mihara, M., Suzuki, Y. et al. (2011) Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell, 23, 17411755.
  • Kant, P., Gordon, M., Kant, S., Zolla, G., Davydov, O., Heimer, Y.M., Chalifa-Caspi, V., Shaked, R. and Barak, S. (2008) Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant, Cell Environ. 31, 697714.
  • Kotting, O., Santelia, D., Edner, C. et al. (2009) STARCH-EXCESS4 is a laforin-like Phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell, 21, 334346.
  • Kotting, O., Kossmann, J., Zeeman, S.C. and Lloyd, J.R. (2010) Regulation of starch metabolism: the age of enlightenment? Curr. Opin. Plant Biol. 13, 321329.
  • Kreft, O., Hoefgen, R. and Hesse, H. (2003) Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants. Plant Physiol. 131, 18431854.
  • Kurepa, J., Smalle, J., Van Montagu, M. and Inze, D. (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J. 14, 759764.
  • Lai, A.G., Doherty, C.J., Mueller-Roeber, B., Kay, S.A., Schippers, J.H. and Dijkwel, P.P. (2012) CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl Acad. Sci. USA, 109, 1712917134.
  • Legnaioli, T., Cuevas, J. and Mas, P. (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J. 28, 37453757.
  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. and Fernie, A.R. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387396.
  • Luedemann, A., von Malotky, L., Erban, A. and Kopka, J. (2012) TagFinder: preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. Methods Mol. Biol. 860, 255286.
  • Messerli, G., Partovi Nia, V., Trevisan, M., Kolbe, A., Schauer, N., Geigenberger, P., Chen, J., Davison, A.C., Fernie, A.R. and Zeeman, S.C. (2007) Rapid classification of phenotypic mutants of Arabidopsis via metabolite fingerprinting. Plant Physiol. 143, 14841492.
  • Moran, D.T. and Rowley, J.C. (1987) Correlative Microscopy in Biology: Instrumentation and Methods. New York, NY: Academic.
  • Nakamichi, N., Kusano, M., Fukushima, A., Kita, M., Ito, S., Yamashino, T., Saito, K., Sakakibara, H. and Mizuno, T. (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol. 50, 447462.
  • Obata, T., Matthes, A., Koszior, S., Lehmann, M., Araujo, W.L., Bock, R., Sweetlove, L.J. and Fernie, A.R. (2011) Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochemistry, 72, 10811091.
  • Panda, S., Poirier, G.G. and Kay, S.A. (2002) tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the Arabidopsis circadian oscillator. Dev. Cell, 3, 5161.
  • Price, J., Laxmi, A., St Martin, S.K. and Jang, J.C. (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 16, 21282150.
  • Redei, G.P. (1962) Supervital mutants of Arabidopsis. Genetics, 47, 443460.
  • Reynolds, E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208212.
  • Rock, C.D. and Sun, X. (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta, 222, 98106.
  • Rook, F., Hadingham, S.A., Li, Y. and Bevan, M.W. (2006) Sugar and ABA response pathways and the control of gene expression. Plant, Cell Environ. 29, 426434.
  • Ruts, T., Matsubara, S., Wiese-Klinkenberg, A. and Walter, A. (2012) Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana. Plant J. 72, 154161.
  • Sanchez, J.P., Duque, P. and Chua, N.H. (2004) ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J. 38, 381395.
  • Sanchez, A., Shin, J. and Davis, S.J. (2011) Abiotic stress and the plant circadian clock. Plant Signal. Behav. 6, 223231.
  • Shen, Y.Y., Wang, X.F., Wu, F.Q. et al. (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443, 823826.
  • Shin, J., Heidrich, K., Sanchez-Villarreal, A., Parker, J.E. and Davis, S.J. (2012) TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell, 24, 24702482.
  • Shin, J., Du, S., Bujdoso, N., Hu, Y. and Davis, S.J. (2013) Overexpression and loss-of-function at TIME FOR COFFEE results in similar phenotypes in diverse growth and physiological responses. J. Plant Biol. 56, 152159.
  • Smith, A.M. and Stitt, M. (2007) Coordination of carbon supply and plant growth. Plant, Cell Environ. 30, 11261149.
  • Stevens, R., Buret, M., Garchery, C., Carretero, Y. and Causse, M. (2006) Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. J. Agric. Food Chem. 54, 61596165.
  • Stitt, M. and Zeeman, S.C. (2012) Starch turnover: pathways, regulation and role in growth. Curr. Opin. Plant Biol. 15, 282292.
  • Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y. and Stitt, M. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914939.
  • Toufighi, K., Brady, S.M., Austin, R., Ly, E. and Provart, N.J. (2005) The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J. 43, 153163.
  • Troncoso-Ponce, M.A. and Mas, P. (2012) Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana. Mol. Plant, 5, 545553.
  • Tsesmetzis, N., Couchman, M., Higgins, J. et al. (2008) Arabidopsis reactome: a foundation knowledgebase for plant systems biology. Plant Cell, 20, 14261436.
  • Urano, K., Maruyama, K., Ogata, Y. et al. (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J. 57, 10651078.
  • Yazdanbakhsh, N., Sulpice, R., Graf, A., Stitt, M. and Fisahn, J. (2011) Circadian control of root elongation and C partitioning in Arabidopsis thaliana. Plant, Cell Environ. 34, 877894.
  • Yin, X.J., Volk, S., Ljung, K. et al. (2007) Ubiquitin lysine 63 chain forming ligases regulate apical dominance in Arabidopsis. Plant Cell, 19, 18981911.
  • Zeeman, S.C., Kossmann, J. and Smith, A.M. (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 61, 209234.