SEARCH

SEARCH BY CITATION

References

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248254.
  • Burch-Smith, T.M., Anderson, J.C., Martin, G.B. and Dinesh-Kumar, S.P. (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 39, 734746.
  • Burlat, V., Oudin, A., Courtois, M., Rideau, M. and St-Pierre, B. (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-drived primary metabolites. Plant J. 38, 131141.
  • Collu, G., Unver, N., Peltenburg-Looman, A.M., van der Heijden, R., Verpoorte, R. and Memelink, J. (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 508, 215220.
  • De Luca, V., Salim, V., Levac, D., Atsumi, S.M. and Yu, F. (2012) Discovery and functional analysis of monoterpenoid indole alkaloid pathways in plants. Methods Enzymol. 515, 207229.
  • Dinda, B., Debnath, S. and Harigaya, Y. (2007) Naturally occurring iridoids. A review, part 1. Chem. Pharm. Bull. 55, 159222.
  • Dinda, B., Debnath, S. and Banik, R. (2011) Naturally occurring iridoids and secoiridoids. An updated review, part 4. Chem. Pharm. Bull. 59, 803833.
  • Dinesh-Kumar, S.P., Anandalakshmi, R., Marathe, R., Schiff, M. and Liu, Y. (2003) Virus-induced gene silencing. Methods Mol. Biol. 236, 287294.
  • El-Sayed, M. and Verpoorte, R. (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem. Rev. 6, 277305.
  • Facchini, P.J., Bohlmann, J., Covello, P.S., De Luca, V., Mahadevan, R., Page, J.E., Ro, D.K., Sensen, C.W., Storms, R. and Martin, V.J. (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol. 30, 127131.
  • Frey, M., Chomet, P., Glawischnig, E. et al. (1997) Analysis of a chemical plant defense mechanism in grasses. Science, 277, 696699.
  • Fukushima, E.O., Seki, H., Sawai, S., Suzuki, M., Ohyama, K., Saito, K. and Muranaka, T. (2013) Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast. Plant Cell Physiol. 54, 740749.
  • Geu-Flores, F., Sherden, N.H., Courdavault, V., Burlat, V., Glenn, W.S., Wu, C., Nims, E., Cui, Y. and O'Connor, S.E. (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature, 492, 138142.
  • Giddings, L.A., Liscombe, D.K., Hamilton, J.P., Childs, K.L., DellaPenna, D., Buell, C.R. and O'Connor, S.E. (2011) A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. J. Biol. Chem. 286, 1675116757.
  • Gietz, D., St. Jean, A., Woods, R.A. and Schiestl, R.H. (1992) Improved method for high efficiency transformation in intact yeast cells. Nucleic Acids Res. 20, 1425.
  • Guirimand, G., Guihur, A., Ginis, O., Poutrain, P., Héricourt, F., Oudin, A., Lanoue, A., St-Pierre, B., Burlat, V. and Courdavault, V. (2011) The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J. 278, 749763.
  • van der Heijden, R., Jacobs, D.I., Snoeijer, W., Hallard, D. and Verpoorte, R. (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr. Med. Chem. 11, 607628.
  • Hotze, M., Schröder, G. and Schröder, J. (1995) Cinnamate 4-hydroxylase from Catharanthus roseus and a strategy for the functional expression of plant cytochrome P450 proteins as translational fusions with P450 reductase in Escherichia coli. FEBS Lett. 374, 345350.
  • Ikeda, H., Esaki, N., Nakai, S., Hashimoto, K., Uesato, S., Soda, K. and Fujita, T. (1991) Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols. J. Biochem. 109, 341347.
  • Irmler, S., Schröder, G., St-Pierre, B., Crouch, N.P., Hotze, M., Schmidt, J., Strack, D., Matern, U. and Schröder, J. (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 24, 797804.
  • Kaltenbach, M., Schröder, G., Schmelzer, E., Lutz, V. and Schröder, J. (1999) Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J. 19, 183193.
  • Katano, N., Yamamoto, H., Iio, R. and Inoue, K. (2001) 7-deoxyloganin 7-hydroxylase in Lonicera japonica cell cultures. Phytochemistry, 58, 5358.
  • Kawai, H., Kuroyanagi, M. and Ueno, A. (1988) Iridoid glucosides from Lonicera japonica THUNB. Chem. Pharm. Bull. 36, 36643666.
  • Liscombe, D. and O'Connor, S.E. (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry, 72, 19691977.
  • Madyastha, K.M., Guarnaccia, R., Baxter, C. and Coscia, C.J. (1973) S-Adenosyl-l–methionine:loganic acid methyltransferase. J. Biol. Chem. 248, 24972501.
  • Mizutani, M. and Ohta, D. (2010) Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 61, 291315.
  • Murata, J., Roepke, J., Gordon, H. and De Luca, V. (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell, 20, 524542.
  • O'Connor, S.E. and Maresh, J.J. (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532547.
  • Oudin, A., Courtois, M., Rideau, M. and Clastre, M. (2007) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem. Rev. 6, 259276.
  • Peñuelas, J., Sardans, J., Stefanescu, C., Parella, T. and Filella, I. (2006) Lonicera implexa leaves bearing naturally laid eggs of the specialist herbivore Euphydryas aurinia have dramatically greater concentrations of iridoid glycosides than other leaves. J. Chem. Ecol. 32, 19251933.
  • Pérez-Bonilla, M., Salido, S., van Beek, T.A., Linares-Palomino, P.J., Altarejos, J., Nogueras, M. and Sánchez, A. (2006) Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. J. Chromatogr. A 1112, 311318.
  • Pompon, D., Louerat, B., Bronine, A. and Urban, P. (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 272, 5164.
  • Ro, D.K., Ehlting, J. and Douglas, C.J. (2002) Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar. Plant Physiol. 130, 18371851.
  • Ro, D.K., Ouellet, M., Paradise, E.M., Burd, H., Eng, D., Paddon, C.J., Newman, J.D. and Keasling, J.D. (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Technol. 8, 83.
  • Roepke, J., Salim, V., Wu, M., Thamm, A.M., Murata, J., Ploss, K., Boland, W. and De Luca, V. (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc. Natl Acad. Sci. USA 107, 1528715292.
  • Salim, V. and De Luca, V. (2013) Towards complete elucidation of monoterpene indole alkaloid biosynthesis pathway: Catharanthus roseus as a pioneer system. Adv. Bot. Res. 68, 137.
  • Schröder, G., Unterbusch, E., Kaltenbach, M., Schmidt, J., Strack, D., De Luca, V. and Schröder, J. (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett. 458, 97102.
  • Seki, H., Sawai, S., Ohyama, K. et al. (2011) Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell, 23, 41124123.
  • Simkin, A.J., Miettinen, K., Claudel, P. et al. (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry, 85, 3643.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 27312739.
  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • Uesato, S., Miyauchi, M., Itoh, H. and Inouye, H. (1986) Biosynthesis of iridoid glucosides in Galium mollugo, G. spurium var. Echinospermon and Deutzia crenata. Intermediacy of deoxyloganic acid, loganin, and iridodial glucoside. Phytochemistry, 25, 25152521.
  • Xiao, M., Zhang, Y., Chen, X. et al. (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166, 122134.
  • Yamamoto, H., Katano, N., Ooi, A. and Inoue, K. (1999) Transformation of loganin and 7-deoxyloganin into secologanin by Lonicera japonica cell suspension cultures. Phytochemistry, 50, 417422.
  • Yamamoto, H., Katano, N., Ooi, A. and Inoue, K. (2000) Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochemistry, 53, 712.