SEARCH

SEARCH BY CITATION

References

  • Angelo, M., Hausladen, A., Singel, D.J. and Stamler, J.S. (2008) Interactions of NO with hemoglobin: from microbes to man. Methods Enzymol. 436, 131168.
  • Appleby, C.A. (1984) Leghemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. 35, 443478.
  • Baudouin, E., Frendo, P., Le Gleuher, M. and Puppo, A. (2004) A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules. J. Exp. Bot. 55, 4347.
  • Becana, M. and Klucas, R.V. (1990) Enzymatic and nonenzymatic mechanisms for ferric leghemoglobin reduction in legume root nodules. Proc. Natl Acad. Sci. USA 87, 72957299.
  • Becana, M., Matamoros, M.A., Udvardi, M. and Dalton, D.A. (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol. 188, 960976.
  • Bruno, S., Faggiano, S., Spyrakis, F. et al. (2007) The reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is controlled by the distal HisE7 and internal hydrophobic cavities. J. Am. Chem. Soc. 129, 28802889.
  • Bustos-Sanmamed, P., Tovar-Méndez, A., Crespi, M., Sato, S., Tabata, S. and Becana, M. (2011) Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytol. 189, 765776.
  • Bykova, N.V., Igamberdiev, A.U., Ens, W. and Hill, R.D. (2006) Identification of an intermolecular disulfide bond in barley hemoglobin. Biochem. Biophys. Res. Commun. 347, 301309.
  • Cochemé, H.M. and Murphy, M.P. (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 283, 17861798.
  • Couture, M., Chamberland, H., St-Pierre, B., Lafontaine, J. and Guertin, M. (1994) Nuclear genes encoding chloroplast hemoglobins in the unicellular green alga Chlamydomonas eugametos. Mol. Gen. Genet. 243, 185197.
  • Dalton, D.A., Baird, L.M., Langeberg, L., Taugher, C.Y., Anyan, W.R., Vance, C.P. and Sarath, G. (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol. 102, 481489.
  • Dordas, C., Rivoal, J. and Hill, R.D. (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann. Bot. 91, 173178.
  • Duff, S.M.G., Wittenberg, J.B. and Hill, R.D. (1997) Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. J. Biol. Chem. 272, 1674616752.
  • Folta, K.M. and Kaufman, L.S. (2000) Preparation of transcriptionally active nuclei from etiolated Arabidopsis thaliana. Plant Cell Rep. 19, 504510.
  • Gardner, P.R. (2012) Hemoglobin: a nitric-oxide dioxygenase. Scientifica, 2012, 134.
  • Gietz, R.D. and Woods, R.A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 8796.
  • Gladwin, M.T., Ognibene, F.P., Pannell, L.K., Nichols, J.S., Pease-Fye, M.E., Shelhamer, J.H. and Schechter, A.N. (2000) Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl Acad. Sci. USA 97, 99439948.
  • Gupta, K.J., Fernie, A.R., Kaiser, W.M. and van Dongen, J.T. (2011) On the origins of nitric oxide. Trends Plant Sci. 16, 160168.
  • Guthrie, C. and Fink, G.R. (1991) Guide to Yeast Genetics and Molecular and Cell Biology. New York: Academic Press.
  • Hargrove, M.S. (2000) A flash photolysis method to characterize hexacoordinate hemoglobin kinetics. Biophys. J . 79, 27332738.
  • Hebelstrup, K.H. and Jensen, E.Ø. (2008) Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta, 227, 917927.
  • Hebelstrup, K.H., Igamberdiev, A.U. and Hill, R.D. (2007) Metabolic effects of hemoglobin gene expression in plants. Gene, 398, 8693.
  • Hebelstrup, K.H., Shah, J.K. and Igamberdiev, A.U. (2013) The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiol. Plant. 148, 457469.
  • Hill, R.D. (2012) Non-symbiotic haemoglobins – what's happening beyond nitric oxide scavenging? AoB PLANTS 2012, pls004.
  • Hunt, P.W., Watts, R.A., Trevaskis, B., Llewelyn, D.J., Burnell, J., Dennis, E.S. and Peacock, W.J. (2001) Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Mol. Biol. 47, 677692.
  • Hunt, P.W., Klok, E.J., Trevaskis, B., Watts, R.A., Ellis, M.H., Peacock, W.J. and Dennis, E.S. (2002) Increased level of hemoglobin 1 enhances survical of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 99, 1719717202.
  • Igamberdiev, A.U., Bykova, N.V. and Hill, R.D. (2006) Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta, 223, 10331040.
  • Igamberdiev, A.U., Bykova, N.V., Shah, J.K. and Hill, R.D. (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol. Plant. 138, 393404.
  • Ioanitescu, A.I., Dewilde, S., Kiger, L., Marden, M.C., Moens, L. and Van Doorslaer, S. (2005) Characterization of nonsymbiotic tomato hemoglobin. Biophys. J . 89, 26282639.
  • Kakar, S., Hoffman, F.G., Storz, J.F., Fabian, M. and Hargrove, M.S. (2010) Structure and reactivity of hexacoordinate hemoglobins. Biophys. Chem. 152, 114.
  • Kim, D.Y., Hong, M.J., Lee, Y.J., Lee, M.B. and Seo, Y.W. (2013) Wheat truncated hemoglobin interacts with photosystem I PSK–I subunit and photosystem II subunit PsbS1. Biol. Plant. 57, 281290.
  • Lee, H., Kim, H. and An, C.S. (2004) Cloning and expression analysis of 2–on–2 hemoglobin from soybean. J. Plant Biol. 47, 9298.
  • Miyake, C., Schreiber, U., Hormann, H., Sano, S. and Asada, K. (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol. 39, 821829.
  • Moran, J.F., Sun, Z., Sarath, G., Arredondo-Peter, R., James, E.K., Becana, M. and Klucas, R.V. (2002) Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase. Plant Physiol. 128, 300313.
  • Mulet, J.M., Alemany, B., Ros, R., Calvete, J.J. and Serrano, R. (2004) Expression of a plant serine O–acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21, 303312.
  • Mur, L.A.J., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J.M., Hebelstrup, K.H. and Gupta, K.J. (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB PLANTS 5, pls052.
  • Pankhurst, C.E., Schwinghamer, E.A., Thorne, S.W. and Bergersen, F.J. (1974) The flavin content of clovers relative to symbiosis with a riboflavin-requiring mutant of Rhizobium trifolii. Plant Physiol. 53, 198205.
  • Perazzolli, M., Dominici, P., Romero-Puertas, M.C., Zago, E., Zeier, J., Sonoda, M., Lamb, C. and Delledonne, M. (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell, 16, 27852794.
  • Qu, Z.L., Wang, H.Y. and Xia, G.X. (2005) GhHb1: a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochim. Biophys. Acta 1730, 103113.
  • Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R. and Mulet, J.M. (2013) Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Res. 13, 97106.
  • Rodríguez-Celma, J., Vázquez-Reina, S., Orduna, J., Abadía, A., Abadía, J., Álvarez-Fernández, A. and López-Millán, A.F. (2011) Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on Medicago truncatula. Plant Cell Physiol. 52, 21732189.
  • Ross, E.J.H., Shearman, L., Mathiesen, M., Zhou, Y.J., Arredondo-Peter, R., Sarath, G. and Klucas, R.V. (2001) Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types. Protoplasma, 218, 125133.
  • Rubio, M.C., Becana, M., Kanematsu, S., Ushimaru, T. and James, E.K. (2009) Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. New Phytol. 183, 395407.
  • Seregélyes, C., Mustárdy, L., Ayaydin, F. et al. (2000) Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells. FEBS Lett. 482, 125130.
  • Smagghe, B.J., Blervacq, A.S., Blassiau, C., Decottignies, J.P., Jacquot, J.P., Hargrove, M.S. and Hilbert, J.L. (2007) Immunolocalization of non-symbiotic hemoglobins during somatic embryogenesis in chicory. Plant Signal. Behav. 2, 4349.
  • Smagghe, B.J., Hoy, J.A., Percifield, R. et al. (2009) Correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers, 91, 10831096.
  • Spyrakis, F., Bruno, S., Bidon-Chanal, A., Luque, F.J., Abbruzzetti, S., Viappiani, C., Dominici, P. and Mozzarelli, A. (2011) Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life, 63, 355362.
  • Sturms, R., Kakar, S., Trent, J. III and Hargrove, M.S. (2010) Trema and Parasponia hemoglobins reveal convergent evolution of oxygen transport in plants. Biochemistry, 49, 40854093.
  • Taylor, E.R., Nie, X.Z., MacGregor, A.W. and Hill, R.D. (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol. Biol. 24, 853862.
  • Trent, J.T. III, Watts, R.A. and Hargrove, M.S. (2001) Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J. Biol. Chem. 276, 3010630110.
  • Trevaskis, B., Watts, R.A., Andersson, C.R., Llewellyn, D.J., Hargrove, M.S., Olson, J.S., Dennis, E.S. and Peacock, W.J. (1997) Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc. Natl Acad. Sci. USA 94, 1223012234.
  • Uchiumi, T., Shimoda, Y., Tsuruta, T. et al. (2002) Expression of symbiotic and nonsymbiotic globin genes responding to microsymbionts on Lotus japonicus. Plant Cell Physiol. 43, 13511358.
  • Vieweg, N.F., Hohnjec, N. and Küster, H. (2005) Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta, 220, 757766.
  • Vigeolas, H., Hühn, D. and Geigenberger, P. (2011) Nonsymbiotic hemoglobin–2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol. 155, 14351444.
  • Vinogradov, S.N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Guertin, M., Gough, J., Dewilde, S., Moens, L. and Vanfleteren, J.R. (2005) Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proc. Natl Acad. Sci. USA 102, 1138511389.
  • Wang, Y., Elhiti, M., Hebelstrup, K.H., Hill, R.D. and Stasolla, C. (2011) Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiol. Biochem. 49, 11081116.
  • Watts, R.A., Hunt, P.W., Hvitved, A.N., Hargrove, M.S., Peacock, W.J. and Dennis, E.S. (2001) A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc. Natl Acad. Sci. USA 98, 1011910124.
  • Weber, R.E. and Vinogradov, S.N. (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81, 569628.
  • Zhang, L., Onda, K., Imai, R., Fukuda, R., Horiuchi, H. and Ohta, A. (2003) Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 307, 308314.