SEARCH

SEARCH BY CITATION

References

  • Adam, Z., Adamska, I., Nakabayashi, K. et al. (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol. 125, 19121918.
  • Aluru, M.R., Yu, F., Fu, A. and Rodermel, S. (2006) Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J. Exp. Bot. 57, 18711881.
  • Asakura, Y., Galarneau, E., Watkins, K.P., Barkan, A. and van Wijk, K.J. (2012) Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol. 159, 961974.
  • Barkan, A. (1993) Nuclear mutants of maize with defects in chloroplast polysome assembley have altered chloroplast RNA metabolism. Plant Cell, 5, 389402.
  • Barkan, A. (1998) Approaches to investigating nuclear genes that function in chloroplast biogenesis in land plants. Methods Enzymol. 297, 3857.
  • Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y. and Watkins, K.P. (2007) The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. RNA, 13, 5564.
  • Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M. and Bairoch, A. (2007) UniProtKB/Swiss-Prot. Methods Mol. Biol. 406, 89112.
  • Chen, M., Choi, Y., Voytas, D.F. and Rodermel, S. (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J. 22, 303313.
  • Clarke, A.K., MacDonald, T.M. and Sjogren, L.L.E. (2005) The ATP-dependent Clp protease in chloroplasts of higher plants. Physiol. Plant. 123, 406412.
  • Germain, A., Herlich, S., Larom, S., Kim, S.H., Schuster, G. and Stern, D.B. (2011) Mutational analysis of Arabidopsis chloroplast polynucleotide phosphorylase reveals roles for both RNase PH core domains in polyadenylation, RNA 3′-end maturation and intron degradation. Plant J. 67, 381394.
  • Hankamer, B., Nield, J., Zheleva, D., Boekema, E., Jansson, S. and Barber, J. (1997) Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. Eur. J. Biochem. 243, 422429.
  • Harris, E.H., Boynton, J.E. and Gillham, N.W. (1994a) Chloroplast ribosomes and protein synthesis. Microbiol. Rev. 58, 700754.
  • Harris, N., Spence, J. and Oparka, K.J. (1994b) A practical approach. In Plant Cell Biology (Harris, N. and Oparka, K.J., eds). Oxford, UK: Oxford University Press, pp. 5168.
  • Huang, W., Chen, Q., Zhu, Y., Hu, F., Zhang, L., Ma, Z., He, Z. and Huang, J. (2013) Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light. Mol. Plant, 6, 16731691.
  • Kato, Y., Miura, E., Ido, K., Ifuku, K. and Sakamoto, W. (2009) The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol. 151, 17901801.
  • Keren, N., Ohkawa, H., Welsh, E.A., Liberton, M. and Pakrasi, H.B. (2005) Psb29, a conserved 22-kD protein, functions in the biogenesis of Photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell, 17, 27682781.
  • Kim, J., Rudella, A., Ramirez Rodriguez, V., Zybailov, B., Olinares, P.D. and van Wijk, K.J. (2009) Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. Plant Cell, 21, 16691692.
  • Koussevitzky, S., Stanne, T.M., Peto, C.A., Giap, T., Sjogren, L.L., Zhao, Y., Clarke, A.K. and Chory, J. (2007) An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol. Biol. 63, 8596.
  • Kuroda, H. and Maliga, P. (2003) The plastid clpP1 protease gene is essential for plant development. Nature, 425, 8689.
  • Lau, E., Lam, M.P., Siu, S.O., Kong, R.P., Chan, W.L., Zhou, Z., Huang, J., Lo, C. and Chu, I.K. (2011) Combinatorial use of offline SCX and online RP-RP liquid chromatography for iTRAQ-based quantitative proteomics applications. Mol. BioSyst. 7, 13991408.
  • Lindahl, M., Spetea, C., Hundal, T., Oppenheim, A.B., Adam, Z. and Andersson, B. (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell, 12, 419431.
  • Liu, X., Yu, F. and Rodermel, S. (2010a) Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: a review. J. Integr. Plant Biol. 52, 750761.
  • Liu, X., Yu, F. and Rodermel, S. (2010b) An Arabidopsis pentatricopeptide repeat protein, SVR7, is required for FtsH-mediated chloroplast biogenesis. Plant Physiol. 154, 15881601.
  • Lo, S.M. and Theg, S.M. (2012) Role of vesicle-inducing protein in plastids 1 in cpTat transport at the thylakoid. Plant J. 71, 656668.
  • Lopez-Juez, E. and Pyke, K.A. (2005) Plastids unleashed: their development and their integration in plant development. Int. J. Dev. Biol. 49, 557577.
  • Marri, L., Trost, P., Trivelli, X., Gonnelli, L., Pupillo, P. and Sparla, F. (2008) Spontaneous assembly of photosynthetic supramolecular complexes as mediated by the intrinsically unstructured protein CP12. J. Biol. Chem. 283, 18311838.
  • Miura, E., Kato, Y., Matsushima, R., Albrecht, V., Laalami, S. and Sakamoto, W. (2007) The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants. Plant Cell, 19, 13131328.
  • Park, S. and Rodermel, S.R. (2004) Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc. Natl Acad. Sci. USA, 101, 1276512770.
  • Peltier, J.B., Ripoll, D.R., Friso, G., Rudella, A., Cai, Y., Ytterberg, J., Giacomelli, L., Pillardy, J. and van Wijk, K.J. (2004) Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J. Biol. Chem. 279, 47684781.
  • Pesaresi, P., Varotto, C., Meurer, J., Jahns, P., Salamini, F. and Leister, D. (2001) Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis. Plant J. 27, 179189.
  • Pogson, B.J. and Albrecht, V. (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol. 155, 15451551.
  • Putarjunan, A., Liu, X., Nolan, T., Yu, F. and Rodermel, S. (2013) Understanding chloroplast biogenesis using second-site suppressors of immutans and var2. Photosynth. Res. 116, 437453.
  • Rudella, A., Friso, G., Alonso, J.M., Ecker, J.R. and van Wijk, K.J. (2006) Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell, 18, 17041721.
  • Sakamoto, W. (2003) Leaf-variegated mutations and their responsible genes in Arabidopsis thaliana. Genes Genet. Syst. 78, 19.
  • Semin, B.K., Davletshina, L.N., Ivanov, I.I., Seibert, M. and Rubin, A.B. (2012) Rapid degradation of the tetrameric Mn cluster in illuminated, PsbO-depleted photosystem II preparations. Biochemistry (Mosc), 77, 152156.
  • Sjogren, L.L. and Clarke, A.K. (2011) Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins. Plant Cell, 23, 322332.
  • Sjogren, L.L., Stanne, T.M., Zheng, B., Sutinen, S. and Clarke, A.K. (2006) Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell, 18, 26352649.
  • Vizcaino, J.A., Cote, R.G., Csordas, A. et al. (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063D1069.
  • Wang, Q., Sullivan, R.W., Kight, A., Henry, R.L., Huang, J., Jones, A.M. and Korth, K.L. (2004) Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol. 136, 35943604.
  • Wu, W., Elsheery, N., Wei, Q., Zhang, L. and Huang, J. (2011) Defective etioplasts observed in variegation mutants may reveal the light-independent regulation of white/yellow sectors of Arabidopsis leaves. J. Integr. Plant Biol. 53, 846857.
  • Yu, F., Park, S. and Rodermel, S.R. (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J. 37, 864876.
  • Yu, F., Park, S. and Rodermel, S.R. (2005) Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes. Plant Physiol. 138, 19571966.
  • Yu, F., Fu, A., Aluru, M., Park, S., Xu, Y., Liu, H., Liu, X., Foudree, A., Nambogga, M. and Rodermel, S. (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant, Cell Environ. 30, 350365.
  • Yu, F., Liu, X., Alsheikh, M., Park, S. and Rodermel, S. (2008) Mutations in SUPPRESSOR OF VARIEGATION1, a factor required for normal chloroplast translation, suppress var2-mediated leaf variegation in Arabidopsis. Plant Cell, 20, 17861804.
  • Zaltsman, A., Ori, N. and Adam, Z. (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis. Plant Cell, 17, 27822790.
  • Zhang, L., Wei, Q., Wu, W., Cheng, Y., Hu, G., Hu, F., Sun, Y., Zhu, Y., Sakamoto, W. and Huang, J. (2009) Activation of the heterotrimeric G protein alpha-subunit GPA1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. Plant J. 58, 10411053.
  • Zheng, B., MacDonald, T.M., Sutinen, S., Hurry, V. and Clarke, A.K. (2006) A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. Planta, 224, 11031115.
  • Zhou, W., Cheng, Y., Yap, A., Chateigner-Boutin, A.L., Delannoy, E., Hammani, K., Small, I. and Huang, J. (2008) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J. 58, 8296.
  • Zybailov, B., Friso, G., Kim, J., Rudella, A., Rodriguez, V.R., Asakura, Y., Sun, Q. and van Wijk, K.J. (2009) Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol. Cell. Proteomics, 8, 17891810.