SEARCH

SEARCH BY CITATION

References

  • Abdallah, M., Dubousset, L., Meuriot, F., Etienne, P., Avice, J.-C. and Ourry, A. (2010) Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot., 61, 26352646.
  • Abdallah, M., Etienne, P., Ourry, A. and Meuriot, F. (2011) Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape? Plant Sci., 180, 511520.
  • Allen, W.M., Patterson, D.S. and Slater, T.F. (1974) A biochemical study of experimental Johne's disease. III. Protein metabolism in sheep and mice. J. Comp. Pathol., 84, 391398.
  • Atkins, C.A., Kuo, J. and Pate, J.S. (1977) Photosynthetic pod wall of pea (Pisum sativum L.): distribution of carbon dioxide-fixing enzymes in relation to pod structure. Plant Physiol., 60, 779786.
  • Belleannee, C., Labas, V., Teixeira-Gomes, A.P., Gatti, J.L., Dacheux, J.L. and Dacheux, F. (2011) Identification of luminal and secreted proteins in bull epididymis. J. Proteomics, 74, 5978.
  • Bewley, J.D. (1997) Seed germination and dormancy. Plant Cell, 9, 10551066.
  • Blagrove, R., Gillespie, J. and Randall, P. (1976) Effect of sulphur supply on the seed globulin composition of Lupinus angustifolius. Funct. Plant Biol., 3, 173184.
  • Bonhomme, R. (2000) Bases and limits to using ‘degree.day’ units. Eur. J. Agron., 13, 110.
  • Boudet, J., Buitink, J., Hoekstra, F.A., Rogniaux, H., Larré, C., Satour, P. and Leprince, O. (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol., 140, 14181436.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem., 72, 248254.
  • Capron, I., Corbineau, F., Dacher, F., Job, C., Côme, D. and Job, D. (2000) Sugarbeet seed priming: effects of priming conditions on germination, solubilization of 11–S globulin and accumulation of LEA proteins. Seed Sci. Res., 10, 243254.
  • Casieri, L., Gallardo, K. and Wipf, D. (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta, 235, 14311447.
  • Chandler, P.M., Higgins, T.J.V., Randall, P.J. and Spencer, D. (1983) Regulation of legumin levels in developing pea seeds under conditions of sulfur deficiency. Plant Physiol., 71, 4754.
  • Chandler, P.M., Spencer, D., Randall, P.J. and Higgins, T.J.V. (1984) Influence of sulfur nutrition on developmental patterns of some major pea seed proteins and their mRNAs. Plant Physiol., 75, 651657.
  • Chang, S., Puryear, J. and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep., 11, 113116.
  • Cheung, G.P., Rosenblum, I.Y. and Sallach, H.J. (1968) Comparative studies of enzymes related to serine metabolism in higher plants. Plant Physiol., 43, 18131820.
  • Corbesier, L., Lejeune, P. and Bernier, G. (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta, 206, 131137.
  • Dalmais, M., Schmidt, J., Le Signor, C. et al. (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol., 9, R43.
  • Dehaye, L., Duval, M., Viguier, D., Yaxley, J. and Job, D. (1997) Cloning and expression of the pea gene encoding SBP65, a seed-specific biotinylated protein. Plant Mol. Biol., 35, 605621.
  • D'Hooghe, P., Escamez, S., Trouverie, J. and Avice, J.C. (2013) Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms. BMC Plant Biol., 13, 23.
  • Djemel, N., Guedon, D., Lechevalier, A., Salon, C., Miquel, M., Prosperi, J.-M., Rochat, C. and Boutin, J.-P. (2005) Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex. Plant Physiol. Biochem., 43, 557566.
  • Dubousset, L., Abdallah, M., Desfeux, A.S. et al. (2009) Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability. J. Exp. Bot., 60, 32393253.
  • Dubousset, L., Etienne, P. and Avice, J.-C. (2010) Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages? J. Exp. Bot., 61, 43134324.
  • Duval, M., DeRose, R.T., Job, C., Faucher, D., Douce, R. and Job, D. (1994) The major biotinyl protein from Pisum sativum seeds covalently binds biotin at a novel site. Plant Mol. Biol., 26, 265273.
  • Foyer, C.H., Theodoulou, F.L. and Delrot, S. (2001) The functions of intercellular and intracellular glutathione transport systems in plants. Trends Plant Sci., 6, 486492.
  • Gallardo, K., Job, C., Groot, S.P., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol., 126, 835848.
  • Gallardo, K., Job, C., Groot, S.P., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. (2002) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol. Plant., 116, 238247.
  • Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R.D. and Burstin, J. (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol., 133, 664682.
  • Gallardo, K., Firnhaber, C., Zuber, H., Héricher, D., Belghazi, M., Henry, C., Küster, H. and Thompson, R. (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol. Cell. Proteomics, 6, 21652179.
  • Gayler, K.R. and Sykes, G.E. (1985) Effects of nutritional stress on the storage proteins of soybeans. Plant Physiol., 78, 582585.
  • Griffin, J.J., Ranney, T.G. and Pharr, D.M. (2004) Photosynthesis, chlorophyll fluorescence, and carbohydrate content of Illicium taxa grown under varied irradiance. J. Am. Soc. Hortic. Sci., 129, 4653.
  • Hawkesford, M.J. (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S–utilization efficiency. J. Exp. Bot., 51, 131138.
  • Hawkesford, M.J. and De Kok, L.J. (2006) Managing sulphur metabolism in plants. Plant, Cell Environ., 29, 382395.
  • Herbette, S., Taconnat, L., Hugouvieux, V. et al. (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie, 88, 17511765.
  • Higashi, Y., Hirai, M.Y., Fujiwara, T., Naito, S., Noji, M. and Saito, K. (2006) Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J., 48, 557571.
  • Hirai, M.Y., Fujiwara, T., Awazuhara, M., Kimura, T., Noji, M. and Saito, K. (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O–acetyl-l–serine as a general regulator of gene expression in response to sulfur nutrition. Plant J., 33, 651663.
  • Hirai, M.Y., Klein, M., Fujikawa, Y. et al. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem., 280, 2559025595.
  • Ho, C.L., Noji, M., Saito, M. and Saito, K. (1999) Regulation of serine biosynthesis in Arabidopsis: crucial role of plant plastidic 3–phosphoglycerate dehydrogenase in non-photosynthetic tissues. J. Biol. Chem., 274, 397402.
  • Hoefgen, R. and Nikiforova, V.J. (2008) Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol. Plant., 132, 190198.
  • Howarth, J.R., Parmar, S., Jones, J. et al. (2008) Co-ordinated expression of amino acid metabolism in response to N and S-deficiency during wheat grain filling. J. Exp. Bot., 59, 36753689.
  • Jander, G. and Joshi, V. (2010) Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol. Plant, 3, 5465.
  • Janzen, H.H. and Bettany, J.R. (1984) Sulfur nutrition of rapeseed: I. Influence of fertilizer nitrogen and sulfur rates. Soil Sci. Soc. Am. J., 48, 100107.
  • Job, C., Laugel, S., Duval, M., Gallardo, K. and Job, D. (2001) Biochemical characterization of atypical biotinylation domains in seed proteins. Seed Sci. Res., 11, 149161.
  • Kataoka, T., Watanabe-Takahashi, A., Hayashi, N., Ohnishi, M., Mimura, T., Buchner, P., Hawkesford, M.J., Yamaya, T. and Takahashi, H. (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell, 16, 26932704.
  • Kato, M., Kobayashi, K., Ogiso, E. and Yokoo, M. (2004) Photosynthesis and dry-matter production during ripening stage in a female-sterile line of rice. Plant Prod. Sci., 7, 184188.
  • Khamis, S., Lamaze, T., Lemoine, Y. and Foyer, C. (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation: relationships between electron transport and carbon assimilation. Plant Physiol., 94, 14361443.
  • Khurana, M.P.S., Sadana, U.S. and Singh, B. (2008) Sulfur nutrition of crops in the Indo-Gangetic plains of South Asia. In Sulfur: A Missing Link between Soils, Crops, and Nutrition (Jez, J., ed.). Madison, WI: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, pp. 1124.
  • Kopriva, S., Suter, M., von Ballmoos, P., Hesse, H., Krähenbühl, U., Rennenberg, H. and Brunold, C. (2002) Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol., 130, 14061413.
  • Kruse, C., Jost, R., Lipschis, M., Kopp, B., Hartmann, M. and Hell, R. (2007) Sulfur-enhanced defence: effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biol., 9, 608619.
  • Kumagai, E., Araki, T. and Kubota, F. (2009) Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. Plant Prod. Sci., 12, 5053.
  • Kuo, T.M., Doehlert, D.C. and Crawford, C.G. (1990) Sugar metabolism in germinating soybean seeds: evidence for the sorbitol pathway in soybean axes. Plant Physiol., 93, 15141520.
  • Le Signor, C., Savois, V., Aubert, G. et al. (2009) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnol. J., 7, 430441.
  • Lunde, C., Zygadlo, A., Simonsen, H.T., Nielsen, P.L., Blennow, A. and Haldrup, A. (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol. Plant., 134, 508521.
  • Marschner, H. (1995) Mineral Nutrition of Higher Plants, 2nd edn. London: Academic Press.
  • Mathesius, U., Keijzers, G., Natera, S.H., Weinman, J.J., Djordjevic, M.A. and Rolfe, B.G. (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics, 1, 14241440.
  • McGrath, S.P. and Zhao, F.J. (1995) A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use Manag., 11, 110114.
  • Moreau, D., Salon, C. and Munier-Jolain, N. (2006) Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches. Plant, Cell Environ., 29, 10871098.
  • Munier-Jolain, N. and Salon, C. (2003) Can sucrose content in the phloem sap reaching field pea seeds (Pisum sativum L.) be an accurate indicator of seed growth potential? J. Exp. Bot., 54, 24572465.
  • Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H. and Hoefgen, R. (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J., 33, 633650.
  • Nikiforova, V.J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M.J., Hesse, H. and Hoefgen, R. (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol., 138, 304318.
  • Ogé, L., Bourdais, G., Bove, J., Collet, B., Godin, B., Granier, F., Boutin, J.P., Job, D., Jullien, M. and Grappin, P. (2008) Protein repair l–isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell, 20, 30223037.
  • Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res., 29, e45.
  • Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C. and Job, D. (2012) Seed germination and vigor. Annu. Rev. Plant Biol., 63, 507533.
  • Rausch, T. and Wachter, A. (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci., 10, 503509.
  • Ravanel, S., Gakière, G., Job, D. and Douce, R. (2008) The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl Acad. Sci. USA, 95, 78057812.
  • Rolland, F., Baena-Gonzalez, E. and Sheen, J. (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol., 57, 675709.
  • Rosnoblet, C., Aubry, C., Leprince, O., Ly Vu, B., Rogniaux, H. and Buitink, J. (2007) The regulatory γ subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds. Plant J. 51, 4759.
  • Scherer, H.W. and Lange, A. (1996) N2 fixation and growth of legumes as affected by sulphur fertilization. Biol. Fertil. Soils, 23, 449453.
  • Scherer, H.W., Pacyna, S., Manthey, N. and Schulz, M. (2006) Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ., 52, 7277.
  • Sexton, P.J., Paek, N.C. and Shibles, R. (1998) Soybean sulfur and nitrogen balance under varying levels of available sulfur. Crop Sci., 38, 975982.
  • Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem., 68, 850858.
  • Shinmachi, F., Buchner, P., Stroud, J.L., Parmar, S., Zhao, F.J., McGrath, S.P. and Hawkesford, M.J. (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol., 153, 327336.
  • Sieh, D., Watanabe, M., Devers, E.A., Brueckner, F., Hoefgen, R. and Krajinski, F. (2013) The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytol., 197, 606616.
  • Spencer, D., Rerie, W., Randall, P. and Higgins, T. (1990) The regulation of pea seed storage protein genes by sulfur stress. Funct. Plant Biol., 17, 355363.
  • Tabe, L.M. and Droux, M. (2001) Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol., 126, 176187.
  • Tan, Q., Zhang, L., Grant, J., Cooper, P. and Tegeder, M. (2010) Increased phloem transport of S–methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol., 154, 18861896.
  • Vandecasteele, C., Teulat-Merah, B., Morère-Le Paven, M.C. et al. (2011) Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigor in Medicago truncatula. Plant, Cell Environ., 34, 14731487.
  • Varin, S., Cliquet, J.B., Personeni, E., Avice, J.C. and Lemauviel-Lavenant, S. (2010) How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)? J. Exp. Bot., 61, 225234.
  • Vestreng, V., Myhre, G., Fagerli, H., Reis, S. and Tarrasón, L. (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos. Chem. Phys., 7, 36633681.
  • Wobus, U. and Weber, H. (1999) Sugars as signal molecules in plant seed development. Biol. Chem., 380, 937944.
  • Young, N.D., Debellé, F., Oldroyd, G.E. et al. (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480, 520524.
  • Zhao, F., McGrath, S.P., Crosland, A.R. and Salmon, S.E. (1995) Changes in the sulphur status of British wheat grain in the last decade, and its geographical distribution. J. Sci. Food Agric., 68, 507514.
  • Zhao, F., Hawkesford, M. and McGrath, S. (1999a) Sulphur assimilation and effects on yield and quality of wheat. J. Cereal Sci., 30, 117.
  • Zhao, F., Wood, A. and McGrath, S. (1999b) Effects of sulphur nutrition on growth and nitrogen fixation of pea (Pisum sativum L.). Plant Soil, 212, 207217.
  • Zimmermann, P. and Zentgraf, U. (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell. Mol. Biol. Lett., 10, 515534.
  • Zuber, H., Davidian, J.C., Aubert, G. et al. (2010a) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol., 154, 913926.
  • Zuber, H., Davidian, J.C., Wirtz, M., Hell, R., Belghazi, M., Thompson, R. and Gallardo, K. (2010b) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol., 10, 78.