SEARCH

SEARCH BY CITATION

References

  • Afendi, F.M., Okada, T., Yamazaki, M. et al. (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 53, e1.
  • Agerbirk, N. and Olsen, C.E. (2012) Glucosinolate structures in evolution. Phytochemistry, 77, 1645.
  • Allwood, J.W., Parker, D., Beckmann, M., Draper, J. and Goodacre, R. (2012) Fourier transform ion cyclotron resonance mass spectrometry for plant metabolite profiling and metabolite identification. Methods Mol. Biol. 860, 157176.
  • Altman, T., Travers, M., Kothari, A., Caspi, R. and Karp, P.D. (2013) A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics, 40, 112.
  • Beck, A., Lendzian, K.J., Oven, M., Christmann, A. and Grill, E. (2003) Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry, 62, 423431.
  • Bednarek, P., Piślewska-Bednarek, M., Ver Loren van Themaat, E., Maddula, R.K., Svatoš, A. and Schulze-Lefert, P. (2011) Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. New Phytol. 132, 713726.
  • Blake-Kalff, M.M.A., Harrison, K.R., Hawkesford, M.J., Zhao, F.J. and McGrath, S.P. (1998) Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol. 118, 13371344.
  • Blum, R., Beck, A., Korte, A., Stengel, A., Letzel, T., Lendzian, K.J. and Grill, E. (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J. 49, 740749.
  • Blum, R., Meyer, K.C., Wünschmann, J., Lendzian, K.J. and Grill, E. (2010) Cytosolic action of phytochelatin synthase. Plant Physiol. 153, 159169.
  • Böttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D. and Glawischnig, E. (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell, 21, 18301845.
  • Brown, P.D., Tokuhisa, J.G., Reichelt, M. and Gershenzon, J. (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62, 471481.
  • Buchner, P., Stuiver, C.E.E., Westerman, S., Wirtz, M., Hell, R., Hawkesford, M.J. and de Kok, L.J. (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol. 136, 33963408.
  • Creek, D.J., Chokkathukalam, A., Jankevics, A., Burgess, K.E.V., Breitling, R. and Barrett, M.P. (2012) Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Anal. Chem. 84, 84428447.
  • Cummins, I., Dixon, D.P., Freitag-Pohl, S., Skipsey, M. and Edwards, R. (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab. Rev. 43, 266280.
  • Davoine, C., Falletti, O., Douki, T., Iacazio, G., Ennar, N., Montillet, J.-L. and Triantaphylidès, C. (2006) Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol. 140, 14841493.
  • Destro, T., Prasad, D., Martignago, D., Bernet, I.L., Trentin, A.R., Renu, I.K., Ferretti, M. and Masi, A. (2011) Compensatory expression and substrate inducibility of gamma-glutamyl transferase GGT2 isoform in Arabidopsis thaliana. J. Exp. Bot. 62, 805814.
  • Dixon, D.P. and Edwards, R. (2009) Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J. Biol. Chem. 284, 2124921256.
  • Dixon, D.P., Skipsey, M. and Edwards, R. (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 71, 338350.
  • Draper, J., Enot, D.P., Parker, D., Beckmann, M., Snowdon, S., Lin, W. and Zubair, H. (2009) Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics, 10, 227.
  • Edwards, R. and Dixon, D.P. (2005) Plant glutathione transferases. Methods Enzymol. 401, 169186.
  • Fahey, J.W., Zalcmann, A.T. and Talalay, P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 551.
  • Geu-Flores, F., Nielsen, M.T., Nafisi, M., Møldrup, M.E., Olsen, C.E., Motawia, M.S. and Halkier, B.A. (2009) Glucosinolate engineering identifies a γ-glutamyl peptidase. Nat. Chem. Biol. 5, 575577.
  • Geu-Flores, F., Møldrup, M.E., Böttcher, C., Olsen, C.E., Scheel, D. and Halkier, B.A. (2011) Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell, 23, 24562469.
  • Giavalisco, P., Hummel, J., Lisec, J., Inostroza, A.C., Catchpole, G. and Willmitzer, L. (2008) High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas. Anal. Chem. 80, 94179425.
  • Giavalisco, P., Li, Y., Matthes, A., Eckhardt, A., Hubberten, H.-M., Hesse, H., Segu, S., Hummel, J., Köhl, K. and Willmitzer, L. (2011) Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. Plant J. 68, 364376.
  • Glazebrook, J. and Ausubel, F.M. (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl Acad. Sci. USA, 91, 89558959.
  • Grzam, A., Martin, M.N., Hell, R. and Meyer, A.J. (2007) Γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett. 581, 31313138.
  • Halkier, B.A. and Gershenzon, J. (2006) Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303333.
  • Hegeman, A.D., Schulte, C.F., Cui, Q., Lewis, I.A., Huttlin, E.L., Eghbalnia, H., Harms, A.C., Ulrich, E.L., Markley, J.L. and Sussman, M.R. (2007) Stable isotope assisted assignment of elemental compositions for metabolomics. Anal. Chem. 79, 69126921.
  • Hell, R. and Wirtz, M. (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book, 9, e0154.
  • Hertkorn, N., Frommberger, M., Witt, M., Koch, B.P., Schmitt-Kopplin, P. and Perdue, E.M. (2008) Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 80, 89088919.
  • Herzsprung, P., Hertkorn, N., Friese, K. and Schmitt-Kopplin, P. (2010) Photochemical degradation of natural organic sulfur compounds (CHOS) from iron-rich mine pit lake pore waters – an initial understanding from evaluation of single-elemental formulae using ultra-high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 24, 29092924.
  • Hesse, H., Kreft, O., Maimann, S., Zeh, M. and Hoefgen, R. (2004) Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 55, 17991808.
  • Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T. and Saito, K. (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 101, 1020510210.
  • Hsieh, C.-L., Yeh, K.-W., de Kok, L.J., Pan, R.-N., Kuo, Y.-H. and Tseng, M.-H. (2012) Simultaneous determination of sulphur metabolites in Arabidopsis thazrliana via LC-ESI-MS/MS and 34S-metabolic labelling. Phytochem. Anal. 23, 324331.
  • Iijima, Y., Nakamura, Y., Ogata, Y. et al. (2008) Metabolite annotations based on the integration of mass spectral information. Plant J. 54, 949962.
  • Janz, D., Behnke, K., Schnitzler, J.-P., Kanawati, B., Schmitt-Kopplin, P. and Polle, A. (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol. 10, 150.
  • Joosen, R.V., Arends, D., Li, Y., Willems, L.A., Keurentjes, J.J., Ligterink, W., Jansen, R.C. and Hilhorst, H.W. (2013) Identifying genotype-by-environment interactions in the metabolism of germinating Arabidopsis seeds using generalized genetical genomics. Plant Physiol. 162, 553566.
  • Kanawati, B., von Saint Paul, V., Herrmann, C., Schäffner, A.R. and Schmitt-Kopplin, P. (2011) Mass spectrometric stereoisomeric differentiation between α- and β-ascorbic acid 2-O-glucosides. Experimental and density functional theory study. Rapid Commun. Mass Spectrom. 25, 806814.
  • Kind, T. and Fiehn, O. (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7, 234.
  • Kind, T. and Fiehn, O. (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105.
  • Kopriva, S., Mugford, S.G., Matthewman, C. and Koprivova, A. (2009) Plant sulfate assimilation genes: redundancy versus specialization. Plant Cell Rep. 28, 17691780.
  • Krajewski, M.P., Kanawati, B., Fekete, A., Kowalski, N., Schmitt-Kopplin, P. and Grill, E. (2013) Analysis of Arabidopsis glutathione-transferases in yeast. Phytochemistry, 91, 198207.
  • Kruve, A., Kaupmees, K., Liigand, J., Oss, M. and Leito, I. (2013) Sodium adduct formation efficiency in ESI source. J. Mass Spectrom. 48, 695702.
  • Lee, B.-R., Huseby, S., Koprivova, A. et al. (2012) Effects of fou8/fry1 mutation on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response? PLoS One, 7, e39425.
  • Li, X., Fekete, A., Englmann, M., Frommberger, M., Lv, S., Chen, G. and Schmitt-Kopplin, P. (2007) At-line coupling of UPLC to chip-electrospray-FTICR-MS. Anal. Bioanal. Chem. 389, 14391446.
  • Liao, S., Ewing, N.P., Boucher, B., Materne, O. and Brummel, C.L. (2012) High-throughput screening for glutathione conjugates using stable-isotope labeling and negative electrospray ionization precursor-ion mass spectrometry. Rapid Commun. Mass Spectrom. 26, 659669.
  • Martin, M.N., Saladores, P.H., Lambert, E., Hudson, A.O. and Leustek, T. (2007) Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol. 114, 17151732.
  • Maruyama-Nakashita, A., Inoue, E., Watanabe-Takahashi, A., Yamaya, T. and Takahashi, H. (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol. 132, 597605.
  • Matsuda, F., Shinbo, Y., Oikawa, A., Hirai, M.Y., Fiehn, O., Kanaya, S., Saito, K. and El-Shemy, H.A. (2009) Assessment of metabolome annotation quality: a method for evaluating the false discovery rate of elemental composition searches. PLoS One, 4, e7490.
  • May, M.J. and Leaver, C.J. (1993) Oxidative stimulation of glutathione synthesis in arabidopsis thaliana suspension cultures. Plant Physiol. 103, 621627.
  • Mugford, S.G., Yoshimoto, N., Reichelt, M. et al. (2009) Disruption of adenosine-5′-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell, 21, 910927.
  • Mugford, S.G., Lee, B.-R., Koprivova, A., Matthewman, C. and Kopriva, S. (2011) Control of sulfur partitioning between primary and secondary metabolism. Plant J. 65, 96105.
  • Nakabayashi, R. and Saito, K. (2013) Metabolomics for unknown plant metabolites. Anal. Bioanal. Chem. 405, 50055011.
  • Nakabayashi, R., Sawada, Y., Yamada, Y., Suzuki, M., Hirai, M.Y., Sakurai, T. and Saito, K. (2013) Combination of liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry with 13C-labeling for chemical assignment of sulfur-containing metabolites in onion bulbs. Anal. Chem. 85, 13101315.
  • Nikiforova, V.J., Gakière, B., Kempa, S., Adamik, M., Willmitzer, L., Hesse, H. and Hoefgen, R. (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J. Exp. Bot. 55, 18611870.
  • Nikiforova, V.J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M.J., Hesse, H. and Hoefgen, R. (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol. 138, 304318.
  • Noctor, G., Queval, G., Mhamdi, A., Chaouch, S. and Foyer, C.H. (2011) Glutathione. Arabidopsis Book, 9, e0142.
  • Ohkama-Ohtsu, N., Radwan, S., Peterson, A., Zhao, P., Badr, A.F., Xiang, C. and Oliver, D.J. (2007a) Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J. 49, 865877.
  • Ohkama-Ohtsu, N., Zhao, P., Xiang, C. and Oliver, D.J. (2007b) Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J. 49, 878888.
  • Ohkama-Ohtsu, N., Oikawa, A., Zhao, P., Xiang, C., Saito, K. and Oliver, D.J. (2008) A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol. 148, 16031613.
  • Ohkama-Ohtsu, N., Sasaki-Sekimoto, Y., Oikawa, A. et al. (2011) 12-oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis. Plant Cell Physiol. 52, 205209.
  • Ohta, D., Kanaya, S. and Suzuki, H. (2010) Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Curr. Opin. Biotechnol. 21, 3544.
  • Omranian, N., Mueller-Roeber, B. and Nikoloski, Z. (2012) PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana. Mol. BioSyst. 8, 11211127.
  • Öztetik, E. (2008) A tale of plant glutathione S-transferases: since 1970. Bot. Rev. 74, 419437.
  • Payne, T.G., Southam, A.D., Arvanitis, T.N. and Viant, M.R. (2009) A signal filtering method for improved quantification and noise discrimination in Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. J. Am. Soc. Mass Spectrom. 20, 10871095.
  • Petersen, B.L., Chen, S., Hansen, C.H., Olsen, C.E. and Halkier, B.A. (2002) Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 214, 562571.
  • Ravilious, G.E. and Jez, J.M. (2012) Structural biology of plant sulfur metabolism: from assimilation to biosynthesis. Nat. Prod. Rep. 29, 11381152.
  • von Saint Paul, V., Zhang, W., Kanawati, B., Geist, B., Faus-Kessler, T., Schmitt-Kopplin, P. and Schäffner, A.R. (2011) The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell, 23, 41244145.
  • Saito, K. and Matsuda, F. (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 463489.
  • Sauter, M., Cornell, K.A., Beszteri, S. and Rzewuski, G. (2004) Functional analysis of methylthioribose kinase genes in plants. Plant Physiol. 136, 40614071.
  • Schmid, D.G., Grosche, P., Bandel, H. and Jung, G. (2000) FTICR-mass spectrometry for high-resolution analysis in combinatorial chemistry. Biotechnol. Bioeng. 71, 149161.
  • Schütz, W., Hausmann, N., Krug, K., Hampp, R. and Macek, B. (2011) Extending SILAC to proteomics of plant cell lines. Plant Cell, 23, 17011705.
  • Shinbo, Y., Nakamura, Y., Altaf-Ul-Amin, M., Asahi, H., Kurokawa, K., Arita, M., Saito, K., Ohta, D., Shibata, D. and Kanaya, S. (2006) KNApSAcK: a comprehensive species–metabolite relationship database. Biotechnol. Agric. For. 57, 165181.
  • Singh, R., White, M.A., Ramana, K.V., Petrash, J.M., Watowich, S.J., Bhatnagar, A. and Srivastava, S.K. (2006) Structure of a glutathione conjugate bound to the active site of aldose reductase. Proteins, 64, 101110.
  • Smith, R. (2000) Evolution of ESI-mass spectrometry and Fourier transform ion cyclotron resonance for proteomics and other biological applications. Int. J. Mass Spectrom. 200, 509544.
  • Sønderby, I.E., Geu-Flores, F. and Halkier, B.A. (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci. 15, 283290.
  • Sousa Silva, M., Gomes, R.A., Ferreira, A.E.N., Ponces Freire, A. and Cordeiro, C. (2013) The glyoxalase pathway: the first hundred years… and beyond. Biochem. J. 453, 115.
  • Stewart, B.J., Navid, A., Kulp, K.S., Knaack, J.L.S. and Bench, G. (2013) d-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae. Yeast, 30, 8191.
  • Storozhenko, S., Belles-Boix, E., Babiychuk, E., Hérouart, D., Davey, M.W., Slooten, L., van Montagu, M., Inzé, D. and Kushnir, S. (2002) γ-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol. 128, 11091119.
  • Tate, S.S. and Meister, A. (1985) γ-Glutamyl transpeptidase from kidney. Methods Enzymol. 113, 400419.
  • Tsuboi, S., Kobayashi, M., Nanba, M., Imaoka, S. and Ohmori, S. (1990) S-(1,2-dicarboxyethyl)glutathione and activity for its synthesis in rat tissues. J. Biochem. 107, 539545.
  • Tsuboi, S., Fujiwara, E., Ogata, K., Sakaue, A., Nakayama, T. and Ohmori, S. (1993) Inhibitory effects of S-(1,2-dicarboxyethyl)glutathione on collagen-induced platelet aggregation; enhancements of cyclic AMP level and adenylate cyclase activity in platelets by S-(1,2-dicarboxyethyl)glutathione. Biol. Pharm. Bull. 16, 10831086.
  • Walker, S.H., Budhathoki-Uprety, J., Novak, B.M. and Muddiman, D.C. (2011) Stable-isotope labeled hydrophobic hydrazide reagents for the relative quantification of N-linked glycans by electrospray ionization mass spectrometry. Anal. Chem. 83, 67386745.
  • Yoshimoto, N., Inoue, E., Saito, K., Yamaya, T. and Takahashi, H. (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol. 131, 15111517.
  • Zhao, F.J., Hawkesford, M.J. and McGrath, S.P. (1999) Sulphur assimilation and effects on yield and quality of wheat. J. Cereal Sci. 30, 117.