SEARCH

SEARCH BY CITATION

References

  • Alexander, M.P. (1969) Differential staining of aborted and nonaborted pollen. Stain Technol. 44, 117122.
  • Bowman, J.L., Drews, G.N. and Meyerowitz, E.M. (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell, 3, 749758.
  • Busch, M.A., Bomblies, K. and Weigel, D. (1999) Activation of a floral homeotic gene in Arabidopsis. Science, 285, 585587.
  • Carlsbecker, A., Tandre, K., Johanson, U., Englund, M. and Engström, P. (2004) The MADS box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant J. 40, 546557.
  • Chang, Y.Y., Chiu, Y.F., Wu, J.W. and Yang, C.H. (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 50, 14251438.
  • Chang, Y.Y., Kao, N.H., Li, J.Y., Hsu, W.H., Liang, Y.L., Wu, J.W. and Yang, C.H. (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid (Oncidium Gower Ramsey). Plant Physiol. 152, 837853.
  • Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I. and Yang, C.H. (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J. 68, 168185.
  • Chou, M.L., Haung, M.D. and Yang, C.H. (2001) EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol. 42, 499507.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature, 353, 3137.
  • Eklund, D.M., Staldal, V., Valsecchi, I. et al. (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell, 22, 349363.
  • Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M. and Colombo, L. (2003) MADS box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 15, 26032611.
  • de Folter, S., Immink, R.G., Kieffer, M. et al. (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell, 17, 14241433.
  • Fujiki, Y., Yoshimoto, K. and Ohsumi, Y. (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143, 11321139.
  • Gómez-Mena, C., de Folter, S., Costa, M.M., Angenent, G.C. and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132, 429438.
  • Guo, Z., Fujioka, S., Blancaflor, E.B., Miao, S., Gou, X. and Li, J. (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell, 2, 11611173.
  • Hiratsu, K., Matsui, K., Koyama, T. and Ohme-Takagi, M. (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733739.
  • Honma, T. and Goto, K. (2001) Complexes of MADS box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525529.
  • Hsu, H.F. and Yang, C.H. (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43, 11981209.
  • Hsu, H.F., Huang, C.H., Chou, L.T. and Yang, C.H. (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44, 783794.
  • Immink, R.G., Tonaco, I.A., de Folter, S., Shchennikova, A., van Dijk, A.D., Busscher-Lange, J., Borst, J.W. and Angenent, G.C. (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10, R24.
  • Ishiguro, S., Nishimori, Y., Yamada, M., Saito, H., Suzuki, T., Nakagawa, T., Miyake, H., Okada, K. and Nakamura, K. (2010) The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme A synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant Cell Physiol. 51, 896911.
  • Ito, T., Wellmer, F., Yu, H., Das, P., Ito, N., Alves-Ferreira, M., Riechmann, J.L. and Meyerowitz, E.M. (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 15, 356360.
  • Ito, T., Nagata, N., Yoshiba, Y., Ohme-Takagi, M., Ma, H. and Shinozaki, K. (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell, 19, 35493562.
  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 39013907.
  • Kaufmann, K., Melzer, R. and Theissen, G. (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347, 183198.
  • Koo, S.C., Bracko, O., Park, M.S. et al. (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS box Gene AGAMOUS-LIKE6. Plant J. 62, 807816.
  • Koyama, T., Sato, F. and Ohme-Takagi, M. (2012) CRES-T for the functional analysis of transcription factors and modification of morphological traits in plants. Curr. Biotechnol. 1, 2332.
  • Li, H.F., Liang, W.Q., Jia, R.D., Yin, C.S., Zong, J., Kong, H.Z. and Zhang, D.B. (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res. 20, 299313.
  • Li, H.F., Liang, W.Q., Hu, Y., Zhu, L., Yin, C.S., Xu, J., Dreni, L., Kater, M. and Zhang, D.B. (2011) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in Specifying floral organ identities and meristem fate. Plant Cell, 23, 25362552.
  • Liu, J., Zhang, Y., Qin, G. et al. (2008) Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell, 20, 15381554.
  • Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484495.
  • McCormick, S. (2004) Control of male gametophyte development. Plant Cell 16(suppl.), S142S153.
  • Melzer, R. and Theissen, G. (2009) Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res. 37, 27232736.
  • Melzer, R., Verelst, W. and Theissen, G. (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res. 37, 144157.
  • Melzer, R., Wang, Y.Q. and Theissen, G. (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin. Cell Dev. Biol. 21, 118128.
  • Mena, M., Mandel, M.A., Lerner, D.R., Yanofsky, M.F. and Schmidt, R.J. (1995) A characterization of the MADS box gene family in maize. Plant J. 8, 845854.
  • Mouradov, A., Glassick, T.V., Hamdorf, B.A., Murphy, L.C., Marla, S.S., Yang, Y. and Teasdale, R.D. (1998) Family of MADS Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiol. 117, 5562.
  • Murmu, J., Bush, M.J., DeLong, C., Li, S., Xu, M., Khan, M., Malcolmson, C., Fobert, P.R., Zachgo, S. and Hepworth, S.R. (2010) Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 154, 14921504.
  • Pařenicová, L., de Folter, S., Kieffer, M. et al. (2003) Molecular and phylogenetic analyses of the complete MADS box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell, 15, 15381551.
  • Peng, Y.J., Shih, C.F., Yang, J.Y., Tan, C.M., Hsu, W.H., Huang, Y.P., Liao, P.C. and Yang, C.H. (2013) A RING-Type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in Arabidopsis. Plant J. 74, 310327.
  • Preuss, D., Rhee, S.Y. and Davis, R.W. (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science, 264, 14581460.
  • Reinheimer, R. and Kellogg, E.A. (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell, 21, 25912605.
  • Rijpkema, A.S., Zethof, J., Gerats, T. and Vandenbussche, M. (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J. 60, 19.
  • Robinson-Beers, K., Pruitt, R.E. and Gasser, C.S. (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell, 4, 12371249.
  • Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell, 7, 12591269.
  • Schauer, S.E., Schlűter, P.M., Baskar, R., Gheyselinck, J., Bolaños, A., Curtis, M.D. and Grossniklaus, U. (2009) Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. Plant J. 59, 9871000.
  • Shindo, S., Ito, M., Ueda, K., Kato, M. and Hasebe, M. (1999) Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol. Dev. 1, 180190.
  • Smaczniak, C., Immink, R.G.H., Muiño, J.M. et al. (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA, 109, 15601565.
  • Tandre, K., Albert, V.A., Sundas, A. and Engstrom, P. (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Mol. Biol. 27, 6978.
  • Tejedor-Cano, J., Prieto-Dapena, P., Almoguera, C., Carranco, R., Hiratsu, K., Ohme-Takagi, M. and Jordano, J. (2010) Loss of function of the HSFA9 seed longevity program. Plant, Cell Environ. 33, 11271135.
  • Theissen, G. (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 7585.
  • Theissen, G. and Saedler, H. (2001) Plant biology. Floral quartets. Nature, 409, 469471.
  • Tzeng, T.Y. and Yang, C.H. (2001) A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant-negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol. 42, 11561168.
  • Webb, M.C. and Gunning, B.E.S. (1990) Embryo sac development in Arabidopsis thaliana. I. Megasporogenesis, including the microtubular cytoskeleton. Sex. Plant Reprod. 3, 244256.
  • Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H. and Theissen, G. (1999) MADS box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl Acad. Sci. USA, 96, 73427347.
  • Yang, C., Vizcay-Barrena, G., Conner, K. and Wilson, Z.A. (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell, 19, 35303548.
  • Zhang, W., Sun, Y., Timofejeva, L., Chen, C., Grossniklaus, U. and Ma, H. (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development, 133, 30853095.