SEARCH

SEARCH BY CITATION

References

  • Alger, B.E. (2004) Endocannabinoids: getting the message across. Proc. Natl Acad. Sci. USA, 23, 85128513.
  • Allen, G.J., Murata, Y., Chu, S.P., Nafisi, M. and Schroeder, J.I. (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell, 7, 16491662.
  • Anagnostopoulos, D., Rakiec, C., Wood, J., Pandarinathan, L., Zvonok, N., Makriyannis, A. and Siafaka-Kapadai, A. (2010) Identification of endocannabinoids and related N-acylethanolamines in Tetrahymena. A new class of compounds for Tetrahymena. Protist, 3, 452465.
  • Austin-Brown, S.L. and Chapman, K.D. (2002) Inhibition of phospholipase Dα by N-acylethanolamines. Plant Physiol. 4, 18921898.
  • Bannenberg, G., Martínez, M., Rodríguez, M.J., López, M.A., Ponce De León, I., Hamberg, M. and Castresana, C. (2009) Functional analysis of α-DOX2, an active α-dioxygenase critical for normal development in tomato plants. Plant Physiol. 151, 14211432.
  • Berdyshev, E.V. (2000) Cannabinoid receptors and the regulation of immune response. Chem. Phys. Lipids, 108, 169190.
  • Blancaflor, E.B., Hou, G. and Chapman, K.D. (2003) Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings. Planta, 217, 206217.
  • Blankman, J.L. and Cravatt, B.F. (2013) Chemical probes of endocannabinoid metabolism. Pharmacol. Rev. 2, 849871.
  • Boonen, J., Bronselaer, A., Nielandt, J., Veryser, L., De Tré, G. and De Spiegeleer, B. (2012) Alkamid database: chemistry, occurrence and functionality of plant N-alkylamides. J. Ethnopharmacol. 3, 563590.
  • Bracey, M.H., Hanson, M.A., Masuda, K.R., Stevens, R.C. and Cravatt, B.F. (2002) Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science, 5599, 17931796.
  • Bright, J.D., Hancock, J.T., Weir, I.S. and Neill, S.J. (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45, 113122.
  • Browse, J. (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 1, 183205.
  • Bulat, E. and Garrett, T.A. (2011) Putative N-acylphosphatidylethanolamine synthase from Arabidopsis thaliana is a lysoglycerophospholipid acyltransferase. J. Biol. Chem. 39, 3381933831.
  • Chai, M.F., Wei, P.C., Chen, Q.J., An, R., Chen, J., Yang, S. and Wang, X.C. (2006) NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J. 47, 665674.
  • Chapman, K.D. (2004) Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants. Prog. Lipid Res. 43, 302327.
  • Chapman, K.D. and Moore, T.S. (1993a) Catalytic properties of a newly discovered acyltransferase that synthesizes N-acylphosphatidylethanolamine in cottonseed (Gossypium hirsutum L.) microsomes. Plant Physiol. 3, 761769.
  • Chapman, K.D. and Moore, T.S. (1993b) N-acylphosphatidylethanolamine synthesis in plants: occurrence, molecular composition, and phospholipid origin. Arch. Biochem. Biophys. 1, 2133.
  • Chapman, K.D., Lin, I. and Desouza, A.D. (1995) Metabolism of cottonseed microsomal N-acylphosphatidylethanolamine. Arch. Biochem. Biophys. 318, 401407.
  • Chapman, K.D., Tripathy, S., Venables, B. and Desouza, A.D. (1998) N-acylethanolamines: formation and molecular composition of a new class of plant lipids. Plant Physiol. 3, 11631168.
  • Chapman, K.D., Venables, B., Markovic, R., Blair, R.W. Jr and Bettinger, C. (1999) N-acylethanolamines in seeds. Quantification of molecular species and their degradation upon imbibition. Plant Physiol. 120, 11571164.
  • Chapman, K., Venables, B., Dian, E. and Gross, G. (2003) Identification and quantification of neuroactive N-acylethanolamines in cottonseed processing fractions. J. Am. Oil Chem. Soc. 3, 223229.
  • Coburn, A.F., Graham, C.E. and Haninger, J. (1954) The effect of egg yolk in diets on anaphylactic arthritis (passive Arthus phenomenon) in the guinea pig. J. Exp. Med. 5, 425435.
  • Corbesier, L., Vincent, C., Jang, S. et al. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316, 10301033.
  • Cortez-Espinosa, N., Aviña-Verduzco, J.A., Ramírez-Chávez, E., Molina-Torres, J. and Ríos-Chávez, P. (2011) Valine and phenylalanine as precursors in the biosynthesis of alkamides in Acmella radicans. Nat. Prod. Commun. 6, 857861.
  • Cotter, M.Q., Teaster, N.D., Blancaflor, E.B. and Chapman, K.D. (2011) N-acylethanolamine (NAE) inhibits growth in Arabidopsis thaliana seedlings via ABI3-dependent and independent pathways. Plant Signal. Behav. 6, 671679.
  • Coulon, D., Faure, L., Salmon, M., Wattelet, V. and Bessoule, J.-J. (2012a) N-acylethanolamines and related compounds: aspects of metabolism and functions. Plant Sci. 184, 129140.
  • Coulon, D., Faure, L., Salmon, M., Wattelet, V. and Bessoule, J. (2012b) Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE). Biochimie, 1, 7585.
  • Coursol, S., Fan, L.M., Le Stunff, H., Spiegel, S., Gilroy, S. and Assmann, S.M. (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature, 423, 651654.
  • Cravatt, B.F., Demarest, K., Patricelli, M.P., Bracey, M.H., Giang, D.K., Martin, B.R. and Lichtman, A.H. (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA, 16, 93719376.
  • Danilevskaya, O.N., Meng, X. and Ananiev, E.V. (2010) Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize. Plant Physiol. 153, 238251.
  • Dave, A., Hernández, M.L., He, Z., Andriotis, V.M., Vaistij, F.E., Larson, T.R. and Graham, I.A. (2011) 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell, 23, 583599.
  • De Petrocellis, L. and Di Marzo, V. (2011) Cell signalling: why fasting worms age slowly. Nature, 473, 161163.
  • Delmas, F., Sankaranarayanan, S., Deb, S., Widdup, E., Bournonville, C., Bollier, N., Northey, J.G.B., McCourt, P. and Samuel, M.A. (2013) ABI3 controls embryo degreening through Mendel's I locus. Proc. Natl Acad. Sci. USA, 40, E3888E3894.
  • Devaiah, S.P., Pan, X., Hong, Y., Roth, M., Welti, R. and Wang, X. (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J. 50, 950957.
  • Devane, W.A., Hanus, L., Breuer, A., Pertwee, R.G., Stevenson, L.A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A. and Mechoulam, R. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258, 19461949.
  • Faure, L., Coulon, D., Laroche-Traineau, J., Le Guedard, M., Schmitter, J.-M., Testet, E., Lessire, R. and Bessoule, J.-J. (2009) Discovery and characterization of an Arabidopsis thaliana N-acylphosphatidylethanolamine synthase. J. Biol. Chem. 28, 1873418741.
  • Felder, C.C., Briley, E.M., Axelrod, J., Simpson, J.T., Mackie, K. and Devane, W.A. (1993) Anandamide, an endogenous cannabinoid agonist, couples to receptor mediated signal transduction. Proc. Natl Acad. Sci. USA, 90, 76567660.
  • Ferro, M., Brugière, S., Salvi, D. et al. (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteomics, 6, 10631084.
  • Feussner, I. and Wasternack, C. (2002) The lipoxygenase pathway. Annu. Rev. Plant Biol. 53, 275297.
  • Fonseca, B.M., Costa, M.A., Almada, M., Correia-Da-Silva, G. and Teixeira, N.A. (2013) Endogenous cannabinoids revisited: a biochemistry perspective. Prostaglandins Other Lipid Mediat. 103, 1330.
  • Fowler, C.J. (2003) Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, ‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. Brain Res. Rev. 41, 2643.
  • Hamberg, M., Ponce De Leon, I., Rodriguez, M.J. and Castresana, C. (2005) α-Dioxygenases. Biochem. Biophys. Res. Commun. 338, 169174.
  • Hayes, A.C., Stupak, J., Li, J. and Cox, A.D. (2013) Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase. J. Lipid Res. 54, 457466.
  • Heyndrickx, K.S. and Vandepoele, K. (2012) Systematic identification of functional plant modules through the integration of complementary data sources. Plant Physiol. 159, 884901.
  • Hörtensteiner, S. (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol. Biol. 82, 505517.
  • Hunter, S., Jones, P., Mitchell, A. et al. (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. D1, D306D312.
  • Jia, Y., Tao, F. and Li, W. (2013) Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS ONE, 6, e65687.
  • Kang, L., Wang, Y.-S., Uppalapati, S.R., Wang, K., Tang, Y., Vadapalli, V., Venables, B.J., Chapman, K.D., Blancaflor, E.B. and Mysore, K.S. (2008) Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant J. 56, 336349.
  • Karava, V., Zafiriou, P.-M., Fasia, L., Anagnostopoulos, D., Boutou, E., Vorgias, C.E., Maccarrone, M. and Siafaka-Kapadai, A. (2005) Anandamide metabolism by Tetrahymena pyriformis in vitro. Characterization and identification of a 66 kDa fatty acid amidohydrolase. Biochimie, 11, 967974.
  • Katagiri, T., Ishiyama, K., Kato, T., Tabata, S., Kobayashi, M. and Shinozaki, K. (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J. 1, 107117.
  • Keereetaweep, J., Kilaru, A., Feussner, I., Venables, B.J. and Chapman, K.D. (2010) Lauroylethanolamide is a potent competitive inhibitor of lipoxygenase activity. FEBS Lett. 14, 32153222.
  • Keereetaweep, J., Blancaflor, E.B., Hornung, E., Feussner, I. and Chapman, K.D. (2013) Ethanolamide oxylipins of linolenic acid negatively regulates Arabidopsis seedling development. Plant Cell, 25, 38243840.
  • Kilaru, A., Blancaflor, E.B., Venables, B.J., Tripathy, S., Mysore, K.S. and Chapman, K.D. (2007) The N-acylethanolamine-mediated regulatory pathway in plants. Chem. Biodivers. 4, 19331955.
  • Kilaru, A., Isaac, G., Tamura, P., Baxter, D., Duncan, S.R., Venables, B.J., Welti, R., Koulen, P. and Chapman, K.D. (2010) Lipid profiling reveals tissue-specific differences for ethanolamide lipids in mice lacking fatty acid amide hydrolase. Lipids, 9, 863875.
  • Kilaru, A., Herrfurth, C., Keereetaweep, J., Hornung, E., Venables, B.J., Feussner, I. and Chapman, K.D. (2011) Lipoxygenase-mediated oxidation of polyunsaturated N-acylethanolamines in Arabidopsis. J. Biol. Chem. 286, 1520515214.
  • Kilaru, A., Tamura, P., Isaac, G., Welti, R., Venables, B., Seier, E. and Chapman, K. (2012) Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines. Planta, 3, 809824.
  • Kim, S.-C., Kang, L., Nagaraj, S., Blancaflor, E.B., Mysore, K.S. and Chapman, K.D. (2009) Mutations in Arabidopsis fatty acid amide hydrolase reveal that catalytic activity influences growth but not sensitivity to abscisic acid or pathogens. J. Biol. Chem. 284, 3406534074.
  • Kim, S.C., Chapman, K.D. and Blancaflor, E.B. (2010) Fatty acid amide lipid mediators in plants. Plant Sci. 178, 411419.
  • Li, Y., Lee, K.K., Walsh, S., Smith, C., Hadingham, S., Sorefan, K., Cawley, G. and Bevan, M.W. (2006) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using relevance vector machine. Genome Res. 16, 414427.
  • Liavonchanka, A. and Feussner, I. (2006) Lipoxygenases: occurrence, functions and catalysis. J. Plant Physiol. 163, 348357.
  • Liu, J., Wang, L., Harvey-White, J. et al. (2006) A biosynthetic pathway for anandamide. Proc. Natl Acad. Sci. USA, 36, 1334513350.
  • Liu, J., Wang, L., Harvey-White, J. et al. (2008) Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology, 54, 17.
  • Lo Verme, J., Fu, J., Astarita, G., La Rana, G., Russo, R., Calignano, A. and Piomelli, D. (2005) The nuclear receptor peroxisome proliferator-activated receptor-α mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 1, 1519.
  • López-Bucio, J., Acevedo-Hernández, G., Ramírez-Chávez, E., Molina-Torres, J. and Herrera-Estrella, L. (2006) Novel signals for plant development. Curr. Opin. Plant Biol. 5, 523529.
  • López-Bucio, J., Millán-Godínez, M., Méndez-Bravo, A., Morquecho-Contreras, A., Ramírez-Chávez, E., Molina-Torres, J., Pérez-Torres, A., Higuchi, M., Kakimoto, T. and Herrera-Estrella, L. (2007) Cytokinin receptors are involved in alkamide regulation of root and shoot development in Arabidopsis. Plant Physiol. 4, 17031713.
  • Lopez-Molina, L., Mongrand, S. and Chua, N.H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. USA, 98, 47824787.
  • Lopez-Molina, L., Mongrand, S., Mclachlin, D.T., Chait, B.T. and Chua, N.H. (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 3, 317328.
  • Lucanic, M., Held, J.M., Vantipalli, M.C., Klang, I.M., Graham, J.B., Gibson, B.W., Lithgow, G.J. and Gill, M.S. (2011) N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature, 473, 226229.
  • Mano, Y., Nemoto, K., Suzuki, M., Seki, H., Fujii, I. and Muranaka, T. (2010) The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. J. Exp. Bot. 1, 2532.
  • McAndrew, R.S. and Chapman, K.D. (1998) Enzymology of cottonseed N-acylphosphatidylethanolamine synthase: kinetic properties and mechanism-based inactivation. Biochim. Biophys. Acta, 1390, 2136.
  • McKinney, M.K. and Cravatt, B.F. (2005) Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem. 74, 411432.
  • Méndez-Bravo, A., Calderón-Vázquez, C., Ibarra-Laclette, E., Raya-González, J., Ramírez-Chávez, E., Molina-Torres, J., Guevara-García, A.A., López-Bucio, J. and Herrera-Estrella, L. (2011) Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana. PLoS ONE, 11, e27251.
  • Merkel, O., Schmid, P.C., Paltauf, F. and Schmid, H.H. (2005) Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta, 3, 215219.
  • Mishra, G., Zhang, W., Deng, F., Zhao, J. and Wang, X. (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science, 312, 264266.
  • Morquecho-Contreras, A., Méndez-Bravo, A., Pelagio-Flores, R., Raya-González, J., Ortíz-Castro, R. and López-Bucio, J. (2010) Characterization of drr1, an alkamide-resistant mutant of Arabidopsis, reveals an important role for small lipid amides in lateral root development and plant senescence. Plant Physiol. 3, 16591673.
  • Mosblech, A., Feussner, I. and Heilmann, I. (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 47, 511517.
  • Motes, C.M., Pechter, P., Yoo, C.M., Wang, Y.S., Chapman, K.D. and Blancaflor, E.B. (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma, 226, 109123.
  • Movahed, P., Jönsson, B.A.G., Birnir, B., Wingstrand, J.A., Jørgensen, T.D., Ermund, A., Sterner, O., Zygmunt, P.M. and Högestätt, E.D. (2005) Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J. Biol. Chem. 46, 3849638504.
  • Nakashima, K., Fujita, Y., Katsura, K., Maruyama, K., Narusaka, Y., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol. Biol. 1, 5168.
  • Nalam, V.J., Keereetaweep, J. and Shah, J. (2012) The green peach aphid, Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin from Arabidopsis thaliana, which promotes colonization of the host plant. Plant Signal. Behav. 1, e22735.
  • Natarajan, V., Schmid, P.C., Reddy, P.V. and Schmid, H.H. (1984) Catabolism of N-acylethanolamine phospholipids by dog brain preparations. J. Neurochem. 42, 16131619.
  • Natarajan, V., Schmid, P.C., Reddy, P.V., Zuzarte-Augustin, M.L. and Schmid, H.H. (1985) Occurrence of N-acylethanolamine phospholipids in fish brain and spinal cord. Biochim. Biophys. Acta, 3, 426433.
  • Neu, D., Lehmann, T., Elleuche, S. and Pollmann, S. (2007) Arabidopsis amidase 1, a member of the amidase signature family. FEBS J. 274, 34403451.
  • Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K. and Hirayama, T. (2007) ABA-hypersensitive germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J. 50, 935949.
  • Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. and Ueda, N. (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 7, 52985305.
  • Okamoto, Y., Morishita, J., Wang, J., Schmid, P.C., Krebsbach, R.J., Schmid, H.H.O. and Ueda, N. (2005) Mammalian cells stably overexpressing N-acylphosphatidylethanolamine-hydrolysing phospholipase D exhibit significantly decreased levels of N-acylphosphatidylethanolamines. Biochem. J. 389, 241247.
  • Ortíz-Castro, R., Martínez-Trujillo, M. and López-Bucio, J. (2008) N-Acyl-l-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant, Cell Environ. 31, 14971509.
  • Pappan, K., Austin-Brown, S., Chapman, K.D. and Wang, X. (1998) Substrate selectivities and lipid modulation of plant phospholipase Dα, -β, and -γ. Arch. Biochem. Biophys. 353, 131140.
  • Patricelli, M.P. and Cravatt, B.F. (1999) Fatty acid amide hydrolase competitively degrades bioactive amides and esters through a nonconventional catalytic mechanism. Biochemistry, 43, 1412514130.
  • Patricelli, M.P., Lovato, M.A. and Cravatt, B.F. (1999) Chemical and mutagenic investigations of fatty acid amide hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties. Biochemistry, 31, 98049812.
  • Petersen, G. and Hansen, H.S. (1999) N-acylphosphatidylethanolamine-hydrolysing phospholipase D lacks the ability to transphosphatidylate. FEBS Lett. 455, 4144.
  • Pieterse, C.M.J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. and Van Wees, S.C.M. (2012) Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489521.
  • Pin, R.A. and Nilsson, O. (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell Environ. 35, 17421755.
  • Pollmann, S., Neu, D., Lehmann, T., Berkowitz, O., Schäfer, T. and Weiler, E. (2006) Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta, 6, 12411253.
  • Pose, D., Yant, L. and Schmid, M. (2012) The end of innocence: flowering networks explode in complexity. Curr. Opin. Plant Biol. 15, 4550.
  • Ramírez-Chávez, E., López-Bucio, J., Herrera-Estrella, L. and Molina-Torres, J. (2004) Alkamides isolated from plants promote growth and alter root development in Arabidopsis. Plant Physiol. 3, 10581068.
  • Schaller, A. and Stintzi, A. (2009) Enzymes in jasmonate biosynthesis – structure, function, regulation. Phytochemistry, 70, 15321538.
  • Schmid, H.H.O. (2000) Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem. Phys. Lipids, 108, 7187.
  • Schmid, P.C., Reddy, P.V., Natarajan, V. and Schmid, H.H. (1983) Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J. Biol. Chem. 15, 93029306.
  • Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D. and Lohmann, J.U. (2003) Dissection of floral induction pathways using global expression analysis. Development, 130, 60016012.
  • Schneider, C., Pratt, D.A., Porter, N.A. and Brash, A.R. (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem. Biol. 14, 473488.
  • Seltmann, M.A., Stingl, N.E., Lautenschlaeger, J.K., Krischke, M., Mueller, M.J. and Berger, S. (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol. 152, 19401950.
  • Seo, E., Yu, J., Ryu, K.H., Lee, M.M. and Lee, I. (2011) Werewolf, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability. Plant Physiol. 156, 18671877.
  • Sepe, N., Petrocelis, L.D., Montanaro, F., Cimino, G. and Di Marzo, V. (1998) Bioactive long chain N-acylethanolamines in five species of edible bivalve molluscs: possible implications for mollusc physiology and sea food industry. Biochim. Biophys. Acta, 1389, 101111.
  • Shalit, A., Rozman, A., Goldshmidt, A., Alvarez, J.P., Bowman, J.L., Eshed, Y. and Lifschitz, E. (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl Acad. Sci. USA, 106, 83928397.
  • Shrestha, R., Noordermeer, M., van der Stelt, M., Veldink, G. and Chapman, K.D. (2002) N-acylethanolamines are metabolized by lipoxygenase and amidohydrolase in competing pathways during cottonseed inhibition. Plant Physiol. 130, 391401.
  • Shrestha, R., Dixon, R.A. and Chapman, K.D. (2003) Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J. Biol. Chem. 278, 3499034997.
  • Shrestha, R., Kim, S.-C., Dyer, J.M., Dixon, R.A. and Chapman, K.D. (2006) Plant fatty acid (ethanol) amide hydrolases. Biochim. Biophys. Acta, 1761, 324334.
  • Simon, G.M. and Cravatt, B.F. (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for α/β-hydrolase 4 in this pathway. J. Biol. Chem. 36, 2646526472.
  • Simon, G.M. and Cravatt, B.F. (2008) Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J. Biol. Chem. 14, 93419349.
  • Smart, D., Jonsson, K.O., Vandevoorde, S., Lambert, D.M. and Fowler, C.J. (2002) ‘Entourage’ effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. Br. J. Pharmacol. 3, 452458.
  • Snider, N.T., Walker, V.J. and Hollenberg, P.F. (2010) Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol. Rev. 62, 136154.
  • Song, Y.H., Ito, S. and Imaizumi, T. (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575583.
  • van der Stelt, M., Noordermeer, M.A., Kiss, T., Van Zadelhoff, G., Merghart, B., Veldink, G.A. and Vliegenthart, J.F. (2000) Formation of a new class of oxylipins from N-acyl(ethanol)amines by the lipoxygenase pathway. Eur. J. Biochem. 267, 20002007.
  • Sun, Y.X., Tsuboi, K., Okamoto, Y., Tonai, T., Murakami, M., Kudo, I. and Ueda, N. (2004) Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem. J. 380, 749756.
  • Teaster, N.D., Motes, C.M., Tang, Y. et al. (2007) N-acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell, 19, 24542469.
  • Teaster, N.D., Keereetaweep, J., Kilaru, A., Wang, Y.S., Tran, C.N.-Q., Ayre, B.G., Chapman, K.D. and Blancaflor, E.B. (2012) Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana. Front. Plant Sci. 3, 32.
  • Tellez, L.A., Medina, S., Han, W., Ferreira, J.G., Licona-Limón, P., Ren, X., Lam, T.T., Schwartz, G.J. and De Araujo, I.E. (2013) A gut lipid messenger links excess dietary fat to dopamine deficiency. Science, 6147, 800802.
  • Tiwari, S.B., Shen, Y., Chang, H.-C. et al. (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 187, 5766.
  • Tripathy, S., Venables, B. and Chapman, K.D. (1999) N-acylethanolamines in signal transduction of elicitor perception. Attenuation of alkalinization response and activation of defense gene expression. Plant Physiol. 4, 12991308.
  • Tsuboi, K., Sun, Y.X., Okamoto, Y., Araki, N., Tonai, T. and Ueda, N. (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J. Biol. Chem. 280, 1108211092.
  • Uraji, M., Katagiri, T., Okuma, E. et al. (2012) Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159, 450460.
  • Venables, B.J., Waggoner, C.A. and Chapman, K.D. (2005) N-acylethanolamines in seeds of selected legumes. Phytochemistry, 66, 19131918.
  • Vicente, J., Cascón, T., Vicedo, B., García-Agustín, P., Hamberg, M. and Castresana, C. (2012) Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol. Plant, 5, 914928.
  • Vogt, T. (2010) Phenylpropanoid biosynthesis. Mol. Plant, 3, 220.
  • Wang, X. (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog. Lipid Res. 39, 109149.
  • Wang, J. and Ueda, N. (2009) Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat. 89, 112119.
  • Wang, J., Okamoto, Y., Morishita, J., Tsuboi, K., Miyatake, A. and Ueda, N. (2006a) Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-β-lactamase family. J. Biol. Chem. 18, 1232512335.
  • Wang, Y.S., Shrestha, R., Kilaru, A., Wiant, W., Venables, B.J., Chapman, K.D. and Blancaflor, E.B. (2006b) Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proc. Natl Acad. Sci. USA, 103, 1219712202.
  • Wang, G., Ryu, S. and Wang, X. (2012) Plant phospholipases: an overview. Methods Mol. Biol. 861, 123137.
  • Wasternack, C. and Hause, B. (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 10211058.
  • Wei, B.Q., Milkkelsen, T.S., McKinney, M.K., Lander, E.S. and Cravatt, B.F. (2006) A second fatty acid hydrolase with variable distribution among placental mammals. J. Biol. Chem. 281, 3656936578.
  • Zhang, W., Qin, C., Zhao, J. and Wang, X. (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl Acad. Sci. USA, 101, 95089513.
  • Zhang, Y., Guo, W.M., Chen, S.M., Han, L. and Li, Z.M. (2007) The role of N-lauroylethanolamine in the regulation of senescence of cut carnations (Dianthus caryophyllus). J. Plant Physiol. 164, 9931001.
  • Zhang, Y., Zhu, H., Zhang, Q., Li, M., Yan, M., Wang, R., Wang, L., Welti, R., Zhang, W. and Wang, X. (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell, 21, 23572377.
  • Zheng, Y. and Brash, A.R. (2010) Dioxygenase activity of epidermal lipoxygenase-3 unveiled: typical and atypical features of its catalytic activity with natural and synthetic polyunsaturated fatty acids. J. Biol. Chem. 285, 3986639875.
  • Zoerner, A.A., Gutzki, F.M., Batkai, S., May, M., Rakers, C., Engeli, S., Jordan, J. and Tsikas, D. (2011) Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: a comprehensive review from an analytical and biological perspective. Biochim. Biophys. Acta, 11, 706723.
  • Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q. and Van Wijk, K.J. (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE, 3, e1994.