SEARCH

SEARCH BY CITATION

References

  • Alder, A., Jamil, M., Marzorati, M. et al. (2012) The path from β–carotene to carlactone, a strigolactone-like plant hormone. Science, 335, 13481351.
  • Bains, J., Kaufman, L., Farnell, B. and Boulanger, M.J. (2011) A product analog bound form of 3–oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J. Mol. Biol. 406, 649658.
  • Baldwin, I.T., Staszak-Kozinski, L. and Davidson, R. (1994) Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. J. Chem. Ecol. 20, 23452371.
  • Beveridge, C.A. and Kyozuka, J. (2010) New genes in the strigolactone-related shoot branching pathway. Curr. Opin. Plant Biol. 13, 3439.
  • Boyer, F.-D., de Saint Germain, A., Pillot, J.–.P. et al. (2012) Structure–activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 159, 15241544.
  • Brewer, P.B., Koltai, H. and Beveridge, C.A. (2013) Diverse roles of strigolactones in plant development. Mol. Plant, 6, 1828.
  • Bythell-Douglas, R., Waters, M.T., Scaffidi, A., Flematti, G.R., Smith, S.M. and Bond, C.S. (2013) The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS ONE, 8, e54758.
  • Calderon-Villalobos, L.I.A., Lee, S., De Oliveira, C. et al. (2012) A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 8, 477485.
  • Chiwocha, S., Dixon, K., Flematti, G., Ghisalberti, E., Merritt, D., Nelson, D., Riseborough, J., Smith, S. and Stevens, J. (2009) Karrikins: a new family of plant growth regulators in smoke. Plant Sci. 177, 252256.
  • Delaux, P.-M., Xie, X., Timme, R.E. et al. (2012) Origin of strigolactones in the green lineage. New Phytol. 195, 857871.
  • Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. (2004) A compound from smoke that promotes seed germination. Science 305, 977.
  • Flematti, G.R., Goddard-Borger, E.D., Merritt, D.J., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. (2007) Preparation of 2H-furo[2,3–c]pyran-2–one derivatives and evaluation of their germination-promoting activity. J. Agric. Food Chem. 55, 21892194.
  • Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. (2009) Identification of alkyl substituted 2H-furo[2,3–c]pyran-2–ones as germination stimulants present in smoke. J. Agric. Food Chem. 57, 94759480.
  • Flematti, G.R., Scaffidi, A., Dixon, K.W., Smith, S.M. and Ghisalberti, E.L. (2011) Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. J. Agric. Food Chem. 59, 11951198.
  • Flematti, G.R., Waters, M.T., Scaffidi, A., Merritt, D.J., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2013) Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol. Plant, 6, 2937.
  • Fukui, K., Ito, S., Ueno, K., Yamaguchi, S., Kyozuka, J. and Asami, T. (2011) New branching inhibitors and their potential as strigolactone mimics in rice. Bioorg. Med. Chem. Lett. 21, 49054908.
  • Gaba, V. and Black, M. (1979) Two separate photoreceptors control hypocotyl growth in green seedlings. Nature, 278, 5154.
  • Gomez-Roldan, V., Fermas, S., Brewer, P.B. et al. (2008) Strigolactone inhibition of shoot branching. Nature, 455, 189194.
  • Guo, Y., Zheng, Z., La Clair, J.J., Chory, J. and Noel, J.P. (2013) Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl Acad. Sci. USA, 110, 82848289.
  • Hamiaux, C., Drummond, R.S., Janssen, B.J., Ledger, S.E., Cooney, J.M., Newcomb, R.D. and Snowden, K.C. (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 20322036.
  • Jiang, L., Liu, X., Xiong, G. et al. (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 504, 401405.
  • Kagiyama, M., Hirano, Y., Mori, T., Kim, S.-Y., Kyozuka, J., Seto, Y., Yamaguchi, S. and Hakoshima, T. (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells, 18, 147160.
  • Keeley, S.C. and Pizzorno, M. (1986) Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicellulose. Am. J. Bot. 73, 12891297.
  • de Lange, J.H. and Boucher, C. (1990) Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 56, 700703.
  • Mangnus, E., Dommerholt, F., de Jong, R. and Zwanenburg, B. (1992) Improved synthesis of strigol analog GR24 and evaluation of the biological activity of its diastereomers. J. Agric. Food Chem. 40, 12301235.
  • Nakamura, H., Xue, Y.-L., Miyakawa, T. et al. (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 2613.
  • Nelson, D.C., Riseborough, J.-A., Flematti, G.R., Stevens, J., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 149, 863873.
  • Nelson, D.C., Flematti, G.R., Riseborough, J.-A., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 107, 70957100.
  • Nelson, D.C., Scaffidi, A., Dun, E.A., Waters, M.T., Flematti, G.R., Dixon, K.W., Beveridge, C.A., Ghisalberti, E.L. and Smith, S.M. (2011) F–box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 108, 88978902.
  • Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 63, 107130.
  • Scaffidi, A., Waters, M.T., Bond, C.S., Dixon, K.W., Smith, S.M., Ghisalberti, E.L. and Flematti, G.R. (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg. Med. Chem. Lett. 22, 37433746.
  • Scaffidi, A., Waters, M.T., Ghisalberti, E.L., Dixon, K.W., Flematti, G.R. and Smith, S.M. (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J. 76, 19.
  • Seto, Y., Sado, A., Asami, K., Hanada, A., Umehara, M., Akiyama, K. and Yamaguchi, S. (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.1314805111.
  • Shen, H., Zhu, L., Bu, Q.-Y. and Huq, E. (2012) MAX2 affects multiple hormones to promote photomorphogenesis. Mol. Plant, 5, 224236.
  • Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., Kato, H. and Matsuoka, M. (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature, 456, 520523.
  • Shinohara, N., Taylor, C. and Leyser, O. (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol. 11, e1001474.
  • van Staden, J., Jager, A.K., Light, M.E. and Burger, B.V. (2004) Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 70, 654659.
  • Stanga, J.P., Smith, S.M., Briggs, W.R. and Nelson, D.C. (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 163, 318330.
  • Stirnberg, P., van de Sande, K. and Leyser, H.M.O. (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 129, 11311141.
  • Stirnberg, P., Furner, I.J. and Leyser, O. (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50, 8094.
  • Sun, X.-D. and Ni, M. (2011) HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Mol. Plant, 4, 116126.
  • Tsuchiya, Y., Vidaurre, D., Toh, S., Hanada, A., Nambara, E., Kamiya, Y., Yamaguchi, S. and McCourt, P. (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6, 741749.
  • Umehara, M., Hanada, A., Yoshida, S. et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195200.
  • Waters, M.T. and Smith, S.M. (2013) KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Mol. Plant, 6, 6375.
  • Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W. and Smith, S.M. (2012a) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development, 139, 12851295.
  • Waters, M.T., Scaffidi, A., Flematti, G.R. and Smith, S.M. (2012b) Karrikins force a rethink of strigolactone mode of action. Plant Signal. Behav. 7, 969972.
  • Waters, M.T., Scaffidi, A., Flematti, G.R. and Smith, S.M. (2013) The origins and mechanisms of karrikin signalling. Curr. Opin. Plant Biol. 16, 667673.
  • Wigchert, S.C. and Zwanenburg, B. (1999) A critical account on the inception of Striga seed germination. J. Agric. Food Chem. 47, 13201325.
  • Young, J.C., Liscum, E. and Hangarter, R.P. (1992) Spectral-dependence of light-inhibited hypocotyl elongation in photomorphogenic mutants of Arabidopsis: evidence for a UV–A photosensor. Planta, 188, 106114.
  • Zhao, L.-H., Zhou, X.E., Wu, Z.–.S. et al. (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23, 436439.
  • Zhou, F., Lin, Q., Zhu, L. et al. (2013) D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 504, 406410.
  • Zwanenburg, B. and Mwakaboko, A.S. (2011) Strigolactone analogues and mimics derived from phthalimide, saccharine, p–tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorg. Med. Chem. Lett. 19, 73947400.
  • Zwanenburg, B., Mwakaboko, A.S., Reizelman, A., Anilkumar, G. and Sethumadhavan, D. (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag. Sci. 65, 478491.