SEARCH

SEARCH BY CITATION

References

  • Aguilar-Martínez, J.A., Poza-Carrión, C. and Cubas, P. (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 19, 458472.
  • Agusti, J., Herold, S., Schwarz, M. et al. (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl Acad. Sci. USA, 108, 2024220247.
  • Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824827.
  • Alder, A., Holdermann, I., Beyer, P. and Al-Babili, S. (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem. J., 416, 289296.
  • Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P. and Al-Babili, S. (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science, 335, 13481351.
  • Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H. and Kyozuka, J. (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J., 51, 10191029.
  • Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S. and Kyozuka, J. (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol., 50, 14161424.
  • Auldridge, M.E., Block, A., Vogel, J.T., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D.R. and Klee, H.J. (2006) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J., 45, 982993.
  • Awad, A.A., Sato, D., Kusumoto, D., Kamioka, H., Takeuchi, Y. and Yoneyama, K. (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul., 48, 221227.
  • Bainbridge, K., Sorefan, K., Ward, S. and Leyser, O. (2005) Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J., 44, 569580.
  • Balla, J., Kalousek, P., Reinhöl, V., Friml, J. and Procházka, S. (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J., 65, 571577.
  • Bassel, G.W., Mullen, R.T. and Bewley, J.D. (2008) procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. J. Exp. Bot., 59, 585593.
  • Bayer, E.M., Smith, R.S., Mandel, T., Nakayama, N., Sauer, M., Prusinkiewicz, P. and Kuhlemeier, C. (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev., 23, 373384.
  • Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C. and Leyser, O. (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol., 16, 553563.
  • Beveridge, C.A., Ross, J.J. and Murfet, I.C. (1996) Branching in pea (Action of genes RMS3 and RMS4). Plant Physiol., 110, 859865.
  • Beveridge, C.A., Symons, G.M., Murfet, I.C., Ross, J.J. and Rameau, C. (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol., 115, 12511258.
  • Beveridge, C.A., Symons, G.M. and Turnbull, C.G. (2000) Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes RMS1 and RMS2. Plant Physiol., 123, 689698.
  • Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H. and Leyser, O. (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol., 14, 12321238.
  • Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., Turnbull, C., Srinivasan, M., Goddard, P. and Leyser, O. (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell, 8, 443449.
  • Boyer, F.D., de Saint Germain, A., Pillot, J.P. et al. (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol., 159, 15241544.
  • Braun, N., de Saint Germain, A., Pillot, J.P. et al. (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol., 158, 225238.
  • Brewer, P.B., Dun, E.A., Ferguson, B.J., Rameau, C. and Beveridge, C.A. (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol., 150, 482493.
  • Brewer, P.B., Koltai, H. and Beveridge, C.A. (2013) Diverse roles of strigolactones in plant development. Mol. Plant, 6, 1828.
  • Bythell-Douglas, R., Waters, M.T., Scaffidi, A., Flematti, G.R., Smith, S.M. and Bond, C.S. (2013) The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS ONE, 8, e54758.
  • Cao, D.N., Cheng, H., Wu, W., Soo, H.M. and Peng, J.R. (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol., 142, 509525.
  • Cardoso, C., Zhang, Y., Jamil, M. et al. (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc. Natl Acad. Sci. USA, 111, 23792384.
  • Challis, R.J., Hepworth, J., Mouchel, C., Waites, R. and Leyser, O. (2013) A role for MORE AXILLARY GROWTH1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol., 161, 18851902.
  • Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E. and Egley, G.H. (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154, 11891190.
  • Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., Müller, D., Domagalska, M.A. and Leyser, O. (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 137, 29052913.
  • Delaux, P.M., Xie, X., Timme, R.E., Puech-Pages, V., Dunand, C., Lecompte, E., Delwiche, C.F., Yoneyama, K., Becard, G. and Sejalon-Delmas, N. (2012) Origin of strigolactones in the green lineage. New Phytol., 195, 857871.
  • Doebley, J., Stec, A. and Hubbard, L. (1997) The evolution of apical dominance in maize. Nature, 386, 485488.
  • Dong, L., Ishak, A., Yu, J., Zhao, R. and Zhao, L. (2013) Identification and functional analysis of three MAX2 orthologs in chrysanthemum. J. Integr. Plant Biol., 55, 434442.
  • Drummond, R.S., Martinez-Sanchez, N.M., Janssen, B.J., Templeton, K.R., Simons, J.L., Quinn, B.D., Karunairetnam, S. and Snowden, K.C. (2009) Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol., 151, 18671877.
  • Drummond, R.S., Sheehan, H., Simons, J.L., Martinez-Sanchez, N.M., Turner, R.M., Putterill, J. and Snowden, K.C. (2012) The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Front. Plant Sci., 2, 115.
  • Dun, E.A., de Saint Germain, A., Rameau, C. and Beveridge, C.A. (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol., 158, 487498.
  • Dun, E.A., de Saint Germain, A., Rameau, C. and Beveridge, C.A. (2013) Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol. Plant, 6, 128140.
  • Finlayson, S.A. (2007) Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol., 48, 667677.
  • Flematti, G.R., Waters, M.T., Scaffidi, A., Merritt, D.J., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2013) Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signalling compounds. Mol. Plant, 6, 2937.
  • Foo, E. and Davies, N.W. (2011) Strigolactones promote nodulation in pea. Planta, 234, 10731081.
  • Foo, E. and Reid, J.B. (2013) Strigolactones: new physiological roles for an ancient signal. J. Plant Growth Regul., 32, 429442.
  • Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C. and Beveridge, C.A. (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell, 17, 464474.
  • Fukui, K., Ito, S. and Asami, T. (2013) Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol. Plant, 6, 8899.
  • Gälweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282, 22262230.
  • Gao, Z.Y., Qian, Q., Liu, X.H., Yan, M.X., Feng, Q., Dong, G.J., Liu, J. and Han, B. (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol. Biol., 71, 265276.
  • Goldsmith, M.H.M. (1977) Polar transport of auxin. Ann. Rev. Plant Phys. Plant Mol. Biol., 28, 439478.
  • Gomez-Roldan, V., Fermas, S., Brewer, P.B. et al. (2008) Strigolactone inhibition of shoot branching. Nature, 455, 189194.
  • Guan, J.C., Koch, K.E., Suzuki, M., Wu, S., Latshaw, S., Petruff, T., Goulet, C., Klee, H.J. and McCarty, D.R. (2012) Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol., 160, 13031317.
  • Guo, S.Y., Xu, Y.Y., Liu, H.H., Mao, Z.W., Zhang, C., Ma, Y., Zhang, Q.R., Meng, Z. and Chong, K. (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commun., 4, 15661577.
  • Ha, C.V., Leyva-Gonzalez, M.A., Osakabe, Y. et al. (2013) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl Acad. Sci. USA, 111, 851856.
  • Hall, S.M. and Hillman, J.R. (1975) Correlative inhibition of lateral bud growth in Phaseolus vulgaris L.: timing of bud growth following decapitation. Planta, 123, 137143.
  • Hamiaux, C., Drummond, R.S., Janssen, B.J., Ledger, S.E., Cooney, J.M., Newcomb, R.D. and Snowden, K.C. (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol., 22, 20322036.
  • Hayward, A., Stirnberg, P., Beveridge, C. and Leyser, O. (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol., 151, 400412.
  • Hubbard, L., McSteen, P., Doebley, J. and Hake, S. (2002) Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics, 162, 19271935.
  • Ishikawa, S., Maekawa, M., Arite, T., Onishi, K., Takamure, I. and Kyozuka, J. (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol., 46, 7986.
  • Janssen, B.J. and Snowden, K.C. (2012) Strigolactone and karrikin signal perception: receptors, enzymes, or both? Front. Plant Sci., 3, 296.
  • Jiang, L., Liu, X., Xiong, G.S. et al. (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 504, 401405.
  • Johnson, X., Brcich, T., Dun, E.A., Goussot, M., Haurogné, K., Beveridge, C.A. and Rameau, C. (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol., 142, 10141026.
  • Kagale, S. and Rozwadowski, K. (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics, 6, 141146.
  • Kagiyama, M., Hirano, Y., Mori, T., Kim, S.Y., Kyozuka, J., Seto, Y., Yamaguchi, S. and Hakoshima, T. (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells, 18, 147160.
  • Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E. and Lee, Y. (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl Acad. Sci. USA, 107, 23552360.
  • Kapulnik, Y., Delaux, P.M., Resnick, N. et al. (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233, 209216.
  • Kobayashi, N., Yang, J., Ueda, A., Suzuki, T., Tomaru, K., Takeno, M., Okuda, K. and Ishigatsubo, Y. (2007) RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8α and ARMC8β are components of the CTLH complex. Gene, 396, 236247.
  • Kohlen, W., Charnikhova, T., Liu, Q., Bours, R., Domagalska, M.A., Beguerie, S., Verstappen, F., Leyser, O., Bouwmeester, H. and Ruyter-Spira, C. (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol., 155, 974987.
  • Kohlen, W., Charnikhova, T., Lammers, M. et al. (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol., 196, 535547.
  • Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J.B., Reinhardt, D., Bours, R., Bouwmeester, H.J. and Martinoia, E. (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 483, 341U135.
  • Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y. and Shinozaki, K. (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl Acad. Sci. USA, 107, 23612366.
  • Lewis, J.M., Mackintosh, C.A., Shin, S., Gilding, E., Kravchenko, S., Baldridge, G., Zeyen, R. and Muehlbauer, G.J. (2008) Overexpression of the maize TEOSINTE BRANCHED1 gene in wheat suppresses tiller development. Plant Cell Rep., 27, 12171225.
  • Li, C.J. and Bangerth, F. (1999) Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant., 106, 415420.
  • Liang, J., Zhao, L., Challis, R. and Leyser, O. (2010) Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). J. Exp. Bot., 61, 30693078.
  • Lin, H., Wang, R., Qian, Q. et al. (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 21, 15121525.
  • Liu, W., Wu, C., Fu, Y., Hu, G., Si, H., Zhu, L., Luan, W., He, Z. and Sun, Z. (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 230, 649658.
  • Locascio, A., Blazquez, M.A. and Alabadi, D. (2013) Dynamic regulation of cortical microtubule organization through Prefoldin-DELLA interaction. Curr. Biol., 23, 804809.
  • Lopez-Raez, J.A., Charnikhova, T., Gomez-Roldan, V. et al. (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol., 178, 863874.
  • Mangnus, E.M., Dommerholt, F.J., Dejong, R.L.P. and Zwanenburg, B. (1992) Improved synthesis of strigol analog GR24 and evaluation of the biological-activity of its diastereomers. J. Agric. Food Chem., 40, 12301235.
  • Mashiguchi, K., Sasaki, E., Shimada, Y., Nagae, M., Ueno, K., Nakano, T., Yoneyama, K., Suzuki, Y. and Asami, T. (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem., 73, 24602465.
  • Minakuchi, K., Kameoka, H., Yasuno, N. et al. (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol., 51, 11271135.
  • Morris, D.A. (1977) Transport of exogenous auxin in 2-branched dwarf pea seedlings (Pisum sativum L.) - some implications for polarity and apical dominance. Planta, 136, 9196.
  • Morris, S.E., Turnbull, C.G., Murfet, I.C. and Beveridge, C.A. (2001) Mutational analysis of branching in pea. Evidence that RMS1 and RMS5 regulate the same novel signal. Plant Physiol., 126, 12051213.
  • Motonami, N., Ueno, K., Nakashima, H., Nomura, S., Mizutani, M., Takikawa, H. and Sugimoto, Y. (2013) The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry, 93, 4148.
  • Nakamura, H., Xue, Y.L., Miyakawa, T. et al. (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun., 4, 2613.
  • Napoli, C. (1996) Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiol., 111, 2737.
  • Napoli, C.A. and Ruehle, J. (1996) New mutations affecting meristem growth and potential in Petunia hybrida Vilm. J. Heredity, 87, 371377.
  • Nelson, D.C., Scaffidi, A., Dun, E.A., Waters, M.T., Flematti, G.R., Dixon, K.W., Beveridge, C.A., Ghisalberti, E.L. and Smith, S.M. (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 108, 88978902.
  • Ongaro, V., Bainbridge, K., Williamson, L. and Leyser, O. (2008) Interactions between axillary branches of Arabidopsis. Mol. Plant, 1, 388400.
  • Parniske, M. (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol., 6, 763775.
  • Pauwels, L., Barbero, G.F., Geerinck, J. et al. (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature, 464, 788U169.
  • Petrášek, J. and Friml, J. (2009) Auxin transport routes in plant development. Development, 136, 26752688.
  • Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, D.G., Yoneyama, K., Nogue, F. and Rameau, C. (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development, 138, 15311539.
  • Prusinkiewicz, P., Crawford, S., Smith, R.S., Ljung, K., Bennett, T., Ongaro, V. and Leyser, O. (2009) Control of bud activation by an auxin transport switch. Proc. Natl Acad. Sci. USA, 106, 1743117436.
  • Rameau, C., Bellec, Y., Grillot, P., Parmenter, K.S., Beveridge, C.A. and Turnbull, C.G.N. (2002) Mutations at several loci suppress vegetative axillary meristem initiation in pea. Pisum Genet., 34, 1519.
  • Rasmussen, A., Mason, M.G., De Cuyper, C. et al. (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol., 158, 19761987.
  • Raupp, F.M. and Spring, O. (2013) New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J. Agric. Food Chem., 61, 1048110487.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T. et al. (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol., 155, 721734.
  • Ruyter-Spira, C., Al-Babili, S., van der Krol, S. and Bouwmeester, H. (2013) The biology of strigolactones. Trends Plant Sci., 18, 7283.
  • Sachs, T. (1981) The control of the patterned differentiation of vascular tissues. Adv. Bot. Res., 9, 151262.
  • Sachs, T. (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol., 41, 649656.
  • de Saint Germain, A., Bonhomme, S., Boyer, F.D. and Rameau, C. (2013a) Novel insights into strigolactone distribution and signalling. Curr. Opin. Plant Biol., 16, 583589.
  • de Saint Germain, A., Ligerot, Y., Dun, E.A., Pillot, J.P., Ross, J.J., Beveridge, C.A. and Rameau, C. (2013b) Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol., 163, 10121025.
  • Sato, D., Awad, A.A., Takeuchi, Y. and Yoneyama, K. (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci. Biotechnol. Biochem., 69, 98102.
  • Scaffidi, A., Waters, M.T., Bond, C.S., Dixon, K.W., Smith, S.M., Ghisalberti, E.L. and Flematti, G.R. (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg. Med. Chem. Lett., 22, 37433746.
  • Scaffidi, A., Waters, M.T., Ghisalberti, E.L., Dixon, K.W., Flematti, G.R. and Smith, S.M. (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J., 76, 19.
  • Schwartz, S.H., Qin, X. and Loewen, M.C. (2004) The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem., 279, 4694046945.
  • Seto, Y., Kameoka, H., Yamaguchi, S. and Kyozuka, J. (2012) Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol., 53, 18431853.
  • Seto, Y., Sado, A., Asami, K., Hanada, A., Umehara, M., Akiyama, K. and Yamaguchi, S. (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl Acad. Sci. USA, 111, 16401645.
  • Sharda, J.N. and Koide, R.T. (2008) Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? New Phytol., 180, 696701.
  • Shen, H., Luong, P. and Huq, E. (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol., 145, 14711483.
  • Shigeta, T., Zaizen, Y., Asami, T., Yoshida, S., Nakamura, Y., Okamoto, S., Matsuo, T. and Sugimoto, Y. (2013) Molecular evidence of the involvement of heat shock protein 90 in brassinosteroid signaling in Arabidopsis T87 cultured cells. Plant Cell Rep. 33, 499510.
  • Shinohara, N., Taylor, C. and Leyser, O. (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol., 11, e1001474.
  • Simon, L., Levesque, R.C. and Lalonde, M. (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl. Environ. Microbiol., 59, 42114215.
  • Simons, J.L., Napoli, C.A., Janssen, B.J., Plummer, K.M. and Snowden, K.C. (2007) Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol., 143, 697706.
  • Snowden, K.C. and Napoli, C.A. (2003) A quantitative study of lateral branching in petunia. Funct. Plant Biol., 30, 987994.
  • Snowden, K.C., Simkin, A.J., Janssen, B.J., Templeton, K.R., Loucas, H.M., Simons, J.L., Karunairetnam, S., Gleave, A.P., Clark, D.G. and Klee, H.J. (2005) The DECREASED APICAL DOMINANCE1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell, 17, 746759.
  • Sorefan, K., Booker, J., Haurogné, K. et al. (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev., 17, 14691474.
  • Stanga, J.P., Smith, S.M., Briggs, W.R. and Nelson, D.C. (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol., 163, 318330.
  • Stirnberg, P., van De Sande, K. and Leyser, H.M. (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 129, 11311141.
  • Stirnberg, P., Furner, I.J. and Leyser, H.M.O. (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J., 50, 8094.
  • Stirnberg, P., Liu, J.P., Ward, S., Kendall, S.L. and Leyser, O. (2012a) Mutation of the cytosolic ribosomal protein-encoding RPS10B gene affects shoot meristematic function in Arabidopsis. BMC Plant Biol., 12, 160.
  • Stirnberg, P., Zhao, S., Williamson, L., Ward, S. and Leyser, O. (2012b) FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J., 71, 907920.
  • Szemenyei, H., Hannon, M., Long, Jeff.A. and J.A. (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science, 319, 13841386.
  • Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J., 33, 513520.
  • Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C.X., Robinson, C.V., Estelle, M. and Zheng, N. (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446, 640645.
  • Thimann, K.V. and Skoog, F. (1933) Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proc. Natl Acad. Sci. USA, 19, 714716.
  • Tomaštíková, E., Cenklová2, V., Kohoutová, L., Petrovská, B., Váchová, L., Halada, P., Kočárová, G. and Binarová, P. (2012) Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes. BMC Plant Biol., 12, 83.
  • Tsuchiya, Y., Vidaurre, D., Toh, S., Hanada, A., Nambara, E., Kamiya, Y., Yamaguchi, S. and McCourt, P. (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol., 6, 741749.
  • Turnbull, C.G., Booker, J.P. and Leyser, H.M. (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J., 32, 255262.
  • Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M. et al. (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 437, 693698.
  • Umehara, M., Hanada, A., Yoshida, S. et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195200.
  • Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N. and Yamaguchi, S. (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol., 51, 11181126.
  • Vert, G. and Chory, J. (2006) Downstream nuclear events in brassinosteroid signalling. Nature, 441, 96100.
  • Vierstra, R.D. (2012) The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol., 160, 214.
  • Vogel, J.T., Walter, M.H., Giavalisco, P. et al. (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J., 61, 300311.
  • Wang, Y.H. and Li, J.Y. (2011) Branching in rice. Curr. Opin. Plant Biol., 14, 9499.
  • Wang, Y., Sun, S., Zhu, W., Jia, K., Yang, H. and Wang, X. (2013) Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev. Cell, 27, 681688.
  • Ward, S.P., Salmon, J., Hanley, S.J., Karp, A. and Leyser, O. (2013) Using Arabidopsis to study shoot branching in biomass willow. Plant Physiol., 162, 800811.
  • Waters, M.T., Brewer, P.B., Bussell, J.D., Smith, S.M. and Beveridge, C.A. (2012a) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol., 159, 10731085.
  • Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W. and Smith, S.M. (2012b) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development, 139, 12851295.
  • Waters, M.T., Scaffidi, A., Flematti, G.R. and Smith, S.M. (2012c) Karrikins force a rethink of strigolactone mode of action. Plant Signal. Behav., 7, 969972.
  • Waters, M.T., Scaffidi, A., Flematti, G.R. and Smith, S.M. (2013) The origins and mechanisms of karrikin signalling. Curr. Opin. Plant Biol., 16, 667673.
  • Waters, M.T., Scaffidi, A., Sun, Y.K., Flematti, G.R. and Smith, S.M. (2014) The karrikin response system of Arabidopsis. Plant J., doi: 10.1111/tpj.12430.
  • Woo, H.R., Chung, K.M., Park, J.H., Oh, S.A., Ahn, T., Hong, S.H., Jang, S.K. and Nam, H.G. (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell, 13, 17791790.
  • Xie, X. and Yoneyama, K. (2010) The strigolactone story. Ann. Rev. Phytopathol., 48, 93117.
  • Xie, X., Yoneyama, K., Kusumoto, D., Yamada, Y., Yokota, T., Takeuchi, Y. and Yoneyama, K. (2008) Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry, 69, 427431.
  • Yang, H.B. and Murphy, A.S. (2009) Functional expression and characterization of Arabidopsis ABCB AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J., 59, 179191.
  • Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T. and Chory, J. (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109, 181191.
  • Yoneyama, K., Xie, X., Kusumoto, D., Sekimoto, H., Sugimoto, Y., Takeuchi, Y. and Yoneyama, K. (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta, 227, 125132.
  • Yoneyama, K., Yoneyama, K., Takeuchi, Y. and Sekimoto, H. (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225, 10311038.
  • Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., Hayashi, H. and Yoneyama, K. (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol., 179, 484494.
  • Yoshida, S., Kameoka, H., Tempo, M., Akiyama, K., Umehara, M., Yamaguchi, S., Hayashi, H., Kyozuka, J. and Shirasu, K. (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol., 196, 12081216.
  • Zhang, S., Li, G., Fang, J. et al. (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J. Int. Plant Biol., 52, 626638.
  • Zhao, L.H., Zhou, X.E., Wu, Z.S. et al. (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res., 23, 436439.
  • Zhou, F., Lin, Q.B., Zhu, L.H. et al. (2013) D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 504, 406410.
  • Zou, J.H., Zhang, S.Y., Zhang, W.P., Li, G., Chen, Z.X., Zhai, W.X., Zhao, X.F., Pan, X.B., Xie, Q. and Zhu, L.H. (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J., 48, 687696.
  • Zwanenburg, B., Mwakaboko, A.S., Reizelman, A., Anilkumar, G. and Sethumadhavan, D. (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag. Sci., 65, 478491.
  • Zwanenburg, B., Nayak, S.K., Charnikhova, T.V. and Bouwmeester, H.J. (2013) New strigolactone mimics: structure-activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorg. Med. Chem. Lett., 23, 51825186.