SEARCH

SEARCH BY CITATION

References

  • Ampomah-Dwamena, C., Morris, B.A., Sutherland, P., Veit, B. and Yao, J.L. (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol. 130, 605617.
  • Avivi, Y., Lev-Yadun, S., Morozova, N., Libs, L., Williams, L., Zhao, J., Varghese, G. and Grafi, G. (2000) Clausa, a tomato mutant with a wide range of phenotypic perturbations, displays a cell type-dependent expression of the homeobox gene LeT6/TKn2. Plant Physiol. 124, 541551.
  • Axtell, M.J. (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 64, 137159.
  • Bemer, M., Karlova, R., Ballester, A.R., Tikunov, Y.M., Bovy, A.G., Wolters-Arts, M., Rossetto, P.d.B., Angenent, G.C.and de Maagd, R.A. (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell, 24, 44374451.
  • Berger, Y., Harpaz-Saad, S., Brand, A., Melnik, H., Sirding, N., Alvarez, J.P., Zinder, M., Samach, A., Eshed, Y. and Ori, N. (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development, 136, 823832.
  • Bharathan, G., Goliber, T.E., Moore, C., Kessler, S., Pham, T. and Sinha, N.R. (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science, 296, 18581860.
  • Birkenbihl, R.P., Jach, G., Saedler, H. and Huijser, P. (2005) Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J. Mol. Biol. 352, 585596.
  • Brukhin, V., Hernould, M., Gonzalez, N., Chevalier, C. and Mouras, A. (2003) Flower development schedule in tomato Lycopersicon esculentum cv. Sweet Cherry. Sex. Plant Reprod. 15, 311320.
  • Chen, P.-Y, Wang, C.-K., Soong, S.-C. and To, K.-Y. (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 11, 287293.
  • Cho, S.H., Coruh, C. and Axtell, M.J. (2012) miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell, 24, 48374849.
  • Chuck, G., Cigan, A.M., Saeteurn, K. and Hake, S. (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 39, 544549.
  • Cong, B. and Tanksley, S.D. (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol. Biol. 62, 867880.
  • Cong, B., Barrero, L.S. and Tanksley, S.D. (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat. Genet. 40, 800804.
  • Cuperus, J.T., Fahlgren, N. and Carrington, J.C. (2011) Evolution and functional diversification of miRNA genes. Plant Cell, 23, 431442.
  • Gillaspy, G., Bendavid, H. and Gruissem, W. (1993) Fruits – a developmental perspective. Plant Cell, 5, 14391451.
  • Girin, T., Sorefan, K. and Ostergaard, L. (2009) Meristematic sculpting in fruit development. J. Exp. Bot. 60, 14931502.
  • Gou, J.-Y., Felippes, F.F., Liu, C.–J., Weigel, D. and Wang, J.–W. (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 23, 15121522.
  • Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125, 15091517.
  • Hayward, H.E. (1938) Solanaceae: Lycopersicum esculentum. In The Structure of Economic Plants (Cramer, L. ed.). New York: Macmillan, pp. 550579.
  • Hendelman, A., Stav, R., Zemach, H. and Arazi, T. (2013) The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. J. Exp. Bot. 64, 54975507.
  • Ishida, T., Aida, M., Takada, S. and Tasaka, M. (2000) Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 41, 6067.
  • Janssen, B.J., Lund, L. and Sinha, N. (1998) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol. 117, 771786.
  • Javelle, M. and Timmermans, M.C.P. (2012) In situ localization of small RNAs in plants by using LNA probes. Nat. Protoc. 7, 533541.
  • Karlova, R., Rosin, F.M., Busscher-Lange, J., Parapunova, V., Do, P.T., Fernie, A.R., Fraser, P.D., Baxter, C., Angenent, G.C. and de Maagd, R.A. (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell, 23, 923941.
  • Karlova, R., van Haarst, J.C., Maliepaard, C., van de Geest, H., Bovy, A.G., Lammers, M., Angenent, G.C. and de Maagd, R.A. (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J. Exp. Bot. 64, 18631878.
  • Karnovsky, M.J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. CellBiol. 27, 1378A.
  • Klein, J., Saedler, H. and Huijser, P. (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 250, 716.
  • Liu, J.P., Van Eck, J., Cong, B. and Tanksley, S.D. (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl Acad. Sci. USA, 99, 1330213306.
  • Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the inline image method. Methods, 25, 402408.
  • Lombardi-Crestana, S., Azevedo, M.d.S., Ferreira e Silva, G.F., Pino, L.E., Appezzato da Gloria, B., Figueira, A., Silveira Nogueira, F.T. and Pereira Peres, L.E. (2012) The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots. J. Exp. Bot. 63, 56895703.
  • Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J. and Seymour, G.B. (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948952.
  • Marti, E., Gisbert, C., Bishop, G.J., Dixon, M.S. and Garcia-Martinez, J.L. (2006) Genetic and physiological characterization of tomato cv. Micro-Tom. J. Exp. Bot. 57, 20372047.
  • Mathews, S. and Kramer, E.M. (2012) The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol. 194, 910923.
  • Mohorianu, I., Schwach, F., Jing, R., Lopez-Gomollon, S., Moxon, S., Szittya, G., Sorefan, K., Moulton, V. and Dalmay, T. (2011) Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J. 67, 232246.
  • Morris, S.E., Turnbull, C.G.N., Murfet, I.C. and Beveridge, C.A. (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126, 12051213.
  • Mounet, F., Moing, A., Garcia, V. et al. (2009) Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 15051528.
  • Moxon, S., Jing, R., Szittya, G., Schwach, F., Pilcher, R.L.R., Moulton, V. and Dalmay, T. (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 18, 16021609.
  • Nakano, T., Kimbara, J., Fujisawa, M., Kitagawa, M., Ihashi, N., Maeda, H., Kasumi, T. and Ito, Y. (2012) MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol. 158, 439450.
  • Nodine, M.D. and Bartel, D.P. (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 24, 26782692.
  • Pabon-Mora, N., Ambrose, B.A. and Litt, A. (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol. 158, 16851704.
  • Palatnik, J.F., Wollmann, H., Schommer, C. et al. (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev. Cell, 13, 115125.
  • Parnis, A., Cohen, O., Gutfinger, T., Hareven, D., Zamir, D. and Lifschitz, E. (1997) The dominant developmental mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a Knotted gene. Plant Cell, 9, 21432158.
  • Pautot, W., Dockx, J., Hamant, O., Kronenberger, J., Grandjean, O., Jublot, D. and Traas, J. (2001) KNAT2: evidence for a link between knotted-like genes and carpel development. Plant Cell, 13, 17191734.
  • Pino, L.E., Lombardi-Crestana, S., Azevedo, M.S., Scotton, D.C., Borgo, L., Quecini, V., Figueira, A. and Peres, L.E.P. (2010) The Rg1 allele as a valuable tool for genetic transformation of the tomato ‘Micro-Tom’ model system. Plant Methods, 6, 23.
  • Rodriguez, G.R., Munos, S., Anderson, C., Sim, S.-C., Michel, A., Causse, M., Gardener, B.B.M., Francis, D. and van der Knaap, E. (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 156, 275285.
  • Rubio-Somoza, I. and Weigel, D. (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci. 16, 258264.
  • Sakai, W.S. (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technol. 48, 247249.
  • Salinas, M., Xing, S., Höhmann, S., Berndtgen, R. and Huijser, P. (2012) Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta, 235, 11711184.
  • Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M. and Weigel, D. (2005) Specific effects of microRNAs on the plant transcriptome. Dev. Cell, 8, 517527.
  • Scofield, S., Dewitte, W. and Murray, J.A.H. (2007) The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J. 50, 767781.
  • Scutt, C.P., Vinauger-Douard, M., Fourquin, C., Finet, C. and Dumas, C. (2006) An evolutionary perspective on the regulation of carpel development. J. Exp. Bot. 57, 21432152.
  • Seymour, G.B., Manning, K., Eriksson, E.M., Popovich, A.H. and King, G.J. (2002) Genetic identification and genomic organization of factors affecting fruit texture. J. Exp. Bot. 53, 20652071.
  • Seymour, G.B., Ostergaard, L., Chapman, N.H., Knapp, S. and Martin, C. (2013) Fruit development and ripening. Annu. Rev. Plant Biol. 64, 219241.
  • Spinelli, S.V., Paula Martin, A., Viola, I.L., Gonzalez, D.H. and Palatnik, J.F. (2011) A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiol. 156, 18941904.
  • Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F. and Hellens, R.P. (2007) Protocol: a highly sensitive RT–PCR method for detection and quantification of microRNAs. Plant Methods, 3, 12.
  • Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W. and Giovannoni, J. (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science, 296, 343346.
  • Wang, J.-W., Schwab, R., Czech, B., Mica, E. and Weigel, D. (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 20, 12311243.
  • Wang, J.-W., Czech, B. and Weigel, D. (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 138, 738749.
  • Wang, J.–W., Park, M.Y., Wang, L.–J., Koo, Y., Chen, X.–Y., Weigel, D. and Poethig, R.S. (2011) MiRNA control of vegetative phase change in trees. PLoS Genet. 7, e1002012.
  • Wei, S., Yu, B., Gruber, M.Y., Khachatourians, G.G., Hegedus, D.D. and Hannoufa, A. (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J. Agric. Food Chem. 58, 95729578.
  • Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J. and van der Knaap, E. (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 15271530.
  • Xie, K., Shen, J., Hou, X., Yao, J., Li, X., Xiao, J. and Xiong, L. (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol. 158, 13821394.
  • Xing, S., Salinas, M., Garcia-Molina, A., Höhmann, S., Berndtgen, R. and Huijser, P. (2013) SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning. Plant J. 75, 566577.
  • Yamaguchi, A., Wu, M.-F., Yang, L., Wu, G., Poethig, R.S. and Wagner, D. (2009) The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell, 17, 268278.
  • Yu, N., Cai, W.–J., Wang, S., Shan, C.–M., Wang, L.–J. and Chen, X.–Y. (2010) Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell, 22, 23222335.
  • Zhang, X., Zou, Z., Zhang, J., Zhang, Y., Han, Q., Hu, T., Xu, X., Liu, H., Li, H. and Ye, Z. (2011) Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett. 585, 435439.