SEARCH

SEARCH BY CITATION

References

  • Agnieszka, L., Agata, C., Anna, K.M. et al. (2014) Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis. Mol Plant. doi: 10.1093/mp/ssu025. [Epub ahead of print].
  • Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S. and Ecker, J.R. (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 21482152.
  • Arc, E., Sechet, J., Corbineau, F., Rajjou, L. and Marion-Poll, A. (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4, 63.
  • Beaudoin, N., Serizet, C., Gosti, F. and Giraudat, J. (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 12, 11031115.
  • Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539544.
  • Chang, I.F., Curran, A., Woolsey, R., Quilici, D., Cushman, J.C., Mittler, R., Harmon, A. and Harper, J.F. (2009) Proteomic profiling of tandem affinity purified 14–3–3 protein complexes in Arabidopsis thaliana. Proteomics, 9, 29672985.
  • Cheng, S.H., Willmann, M.R., Chen, H.C. and Sheen, J. (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469485.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, 735743.
  • Cracker, L.E. and Abeles, F.B. (1969) Abscission: role of abscisic acid. Plant Physiol. 44, 11441149.
  • Finkelstein, R. (2013) Abscisic acid synthesis and response. Arabidopsis Book, 11, e0166.
  • Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y. and McCourt, P. (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell, 12, 11171126.
  • Hamel, L.P., Sheen, J. and Seguin, A. (2014) Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci. 19, 7989.
  • Han, L., Li, G.J., Yang, K.Y., Mao, G., Wang, R., Liu, Y. and Zhang, S. (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J. 64, 114127.
  • He, J., Duan, Y., Hua, D., Fan, G., Wang, L., Liu, Y., Chen, Z., Han, L., Qu, L.J. and Gong, Z. (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell, 24, 18151833.
  • Hernández Sebastià, C., Hardin, S.C., Clouse, S.D., Kieber, J.J. and Huber, S.C. (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch. Biochem. Biophys. 428, 8191.
  • Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Guo, Y., Chen, Z. and Gong, Z. (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell, 24, 25462561.
  • Ivanchenko, M.G., Muday, G.K. and Dubrovsky, J.G. (2008) Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 55, 335347.
  • Jiang, Y., Joyce, D.C. and Macnish, A.J. (2000) Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. J. Plant Growth Regul. 19, 106111.
  • Joo, S., Liu, Y., Lueth, A. and Zhang, S. (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C–terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54, 129140.
  • Joshi-Saha, A., Valon, C. and Leung, J. (2011) Abscisic acid signal off the STARting block. Mol. Plant, 4, 562580.
  • Kamiyoshihara, Y., Iwata, M., Fukaya, T., Tatsuki, M. and Mori, H. (2010) Turnover of LeACS2, a wound-inducible 1–aminocyclopropane-1–carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J. 64, 140150.
  • Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D. and Schroeder, J.I. (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 26232633.
  • Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chefdor, F. and Giraudat, J. (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 264, 14481452.
  • Li, H., Johnson, P., Stepanova, A., Alonso, J.M. and Ecker, J.R. (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell, 7, 193204.
  • Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y. and Zhang, S. (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 8, e1002767.
  • Linkies, A., Muller, K., Morris, K. et al. (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 21, 38033822.
  • Liu, Y. and Zhang, S. (2004) Phosphorylation of 1–aminocyclopropane-1–carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell, 16, 33863399.
  • Lizada, M.C. and Yang, S.F. (1979) A simple and sensitive assay for 1–aminocyclopropane-1–carboxylic acid. Anal. Biochem. 100, 140145.
  • van Loon, L.C., Geraats, B.P. and Linthorst, H.J. (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11, 184191.
  • Lumba, S., Cutler, S. and McCourt, P. (2010) Plant nuclear hormone receptors: a role for small molecules in protein–protein interactions. Annu. Rev. Cell Dev. Biol. 26, 445469.
  • Ma, S.Y. and Wu, W.H. (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol. Biol. 65, 511518.
  • Meyer, K., Leube, M.P. and Grill, E. (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 264, 14521455.
  • Ohkuma, K., Lyon, J.L., Addicott, F.T. and Smith, O.E. (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science, 142, 15921593.
  • Okushima, Y., Overvoorde, P. J., Arima, K. et al. (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 17, 444463.
  • Ortega-Martinez, O., Pernas, M., Carol, R.J. and Dolan, L. (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science, 317, 507510.
  • Pencik, A., Simonovik, B., Petersson, S.V. et al. (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3–acetic acid catabolite 2–oxindole-3–acetic acid. Plant Cell, 25, 38583870.
  • Riov, J., Dagan, E., Goren, R. and Yang, S.F. (1990) Characterization of abscisic acid-induced ethylene production in citrus leaf and tomato fruit tissues. Plant Physiol. 92, 4853.
  • Rubio, S., Rodrigues, A., Saez, A., Dizon, M.B., Galle, A., Kim, T.H., Santiago, J., Flexas, J., Schroeder, J.I. and Rodriguez, P.L. (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol. 150, 13451355.
  • Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J. and Benkova, E. (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell, 19, 21972212.
  • Skottke, K.R., Yoon, G.M., Kieber, J.J. and DeLong, A. (2011) Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet. 7, e1001370.
  • Stepanova, A.N. and Alonso, J.M. (2009) Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol., 12, 548555.
  • Stepanova, A.N., Hoyt, J.M., Hamilton, A.A. and Alonso, J.M. (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell, 17, 22302242.
  • Stepanova, A.N., Yun, J., Likhacheva, A.V. and Alonso, J.M. (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell, 19, 21692185.
  • Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y., Dolezal, K., Schlereth, A., Jurgens, G. and Alonso, J.M. (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 133, 177191.
  • Strader, L.C., Chen, G.L. and Bartel, B. (2010) Ethylene directs auxin to control root cell expansion. Plant J. 64, 874884.
  • Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T., Sandberg, G., Bhalerao, R., Ljung, K. and Bennett, M.J. (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell, 19, 21862196.
  • Ton, J., Flors, V. and Mauch-Mani, B. (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14, 310317.
  • Tsuchisaka, A., Yu, G., Jin, H., Alonso, J.M., Ecker, J.R., Zhang, X., Gao, S. and Theologis, A. (2009) A combinatorial interplay among the 1–aminocyclopropane-1–carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics, 183, 9791003.
  • Vogel, J.P., Woeste, K.E., Theologis, A. and Kieber, J.J. (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl Acad. Sci. USA, 95, 47664771.
  • Wang, K.L., Li, H. and Ecker, J.R. (2002) Ethylene biosynthesis and signaling networks. Plant Cell, 14(Suppl.), S131S151.
  • Wang, K.L., Yoshida, H., Lurin, C. and Ecker, J.R. (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 428, 945950.
  • Wang, H., Mei, W., Qin, Y. and Zhu, Y. (2011a) 1–Aminocyclopropane-1–carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation. Acta Biochim. Biophys. Sin. 43, 654661.
  • Wang, L., Hua, D., He, J., Duan, Y., Chen, Z., Hong, X. and Gong, Z. (2011b) Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 7, e1002172.
  • Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155189.
  • Yoon, G.M. and Kieber, J.J. (2013) 14–3–3 regulates 1–aminocyclopropane-1–carboxylate synthase protein turnover in Arabidopsis. Plant Cell, 25, 10161028.
  • Yoshida, H., Nagata, M., Saito, K., Wang, K.L. and Ecker, J.R. (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1–aminocyclopropane-1–carboxylate synthases. BMC Plant Biol. 5, 14.
  • Zhao, Q. and Guo, H.W. (2011) Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol. Plant, 4, 626634.
  • Zhao, L.N., Shen, L.K., Zhang, W.Z., Zhang, W., Wang, Y. and Wu, W.H. (2013) Ca2+-dependent protein kinase 11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell, 25, 649661.
  • Zhu, Z. and Guo, H. (2008) Genetic basis of ethylene perception and signal transduction in Arabidopsis. J. Integr. Plant Biol. 50, 808815.
  • Zhu, S.Y., Yu, X.C., Wang, X.J. et al. (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 19, 30193036.