SEARCH

SEARCH BY CITATION

References

  • 1
    Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol 2012;24:5866.
  • 2
    Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012;30:759795.
  • 3
    Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt M, Cookson W. Disordered microbial communities in asthmatic airways. PLoS One 2010;5:e8578.
  • 4
    Cardenas PA, Cooper PJ, Cox MJ, Chico M, Arias C, Moffatt MF, Cookson WO. Upper airways microbiota in antibiotic-naive wheezing and healthy infants from the tropics of rural Ecuador. PLoS One 2012;7:e46803.
  • 5
    Herbst T, Sichelstiel A, Schar C, Yadava K, Burki K, Cahenzli J, McCoy K, Marsland BJ, Harris NL. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 2011;184:198205.
  • 6
    Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M. Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005;23:749786.
  • 7
    Beil WJ, Schulz M, Wefelmeyer U. Mast cell granule composition and tissue location--a close correlation. Histol Histopathol 2000;15:937946.
  • 8
    Blank U, Rivera J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 2004;25:266273.
  • 9
    Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997;77:10331079.
  • 10
    Wesolowski J, Paumet F. The impact of bacterial infection on mast cell degranulation. Immunol Res 2011;51(2–3):215226.
  • 11
    Munoz S, Hernandez-Pando R, Abraham S, Enciso J. Mast cell activation by Mycobacterium tuberculosis: mediator release and role of CD48. J Immunol 2003;170:55905596.
  • 12
    Hoek KL, Cassell GH, Duffy LB, Atkinson TP. Mycoplasma pneumoniae-induced activation and cytokine production in rodent mast cells. J Allergy Clin Immunol 2002;109:470476.
  • 13
    Barbuti G, Moschioni M, Censini S, Covacci A, Montecucco C, Montemurro P. Streptococcus pneumoniae induces mast cell degranulation. Int J Med Microbiol 2006;296(4–5):325329.
  • 14
    Kawahara T. Inhibitory effect of heat-killed Lactobacillus strain on immunoglobulin E-mediated degranulation and late-phase immune reactions of mouse bone marrow-derived mast cells. Anim Sci J 2010;81:714721.
  • 15
    Schiffer C, Lalanne AI, Cassard L, Mancardi DA, Malbec O, Bruhns P, Dif F, Daeron M. A strain of Lactobacillus casei inhibits the effector phase of immune inflammation. J Immunol 2011;187:26462655.
  • 16
    Forsythe P, Wang B, Khambati I, Kunze WA. Systemic effects of ingested Lactobacillus rhamnosus: inhibition of mast cell membrane potassium (IKCa) current and degranulation. PLoS One 2012;7:e41234.
  • 17
    Harata G, He F, Takahashi K, Hosono A, Kawase M, Kubota A, Hiramatsu M, Kaminogawa S. Bifidobacterium suppresses IgE-mediated degranulation of rat basophilic leukemia (RBL-2H3) cells. Microbiol Immunol 2010;54:5457.
  • 18
    Magerl M, Lammel V, Siebenhaar F, Zuberbier T, Metz M, Maurer M. Non-pathogenic commensal Escherichia coli bacteria can inhibit degranulation of mast cells. Exp Dermatol 2008;17:427435.
  • 19
    Kulka M, Fukuishi N, Rottem M, Mekori Y, Metcalfe D. Mast cells, which interact with Escherichia coli, up-regulate genes associated with innate immunity and become less responsive to FceRI-mediated activation. J Leukoc Biol 2006;79:339350.
  • 20
    Malaviya R, Ross E, Jakschik B, Abraham S. Mast cell degranulation induced by type I fimbriated Escherichia coli in mice. J Clin Invest 1994;93:16451653.
  • 21
    Malaviya R, Ikeda T, Abraham S, Malaviya R. Contribution of mast cells to bacterial clearance and their proliferation during experimental cystitis induced by type 1 fimbriated E. coli. Immunol Lett 2004;91:103111.
  • 22
    Lippert U, Ferrari DM, Jahn R. Endobrevin/VAMP8 mediates exocytotic release of hexosaminidase from rat basophilic leukaemia cells. FEBS Lett 2007;581:34793484.
  • 23
    Puri N, Roche PA. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis. Traffic 2006;7:14821494.
  • 24
    Hibi T, Hirashima N, Nakanishi M. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem Biophys Res Commun 2000;271:3641.
  • 25
    Sander L, Frank S, Bolat S, Blank U, Galli T, Bigalke H, Bischoff S, Lrentz A. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. Eur J Immunol 2008;38:855863.
  • 26
    Puri N, Roche P. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci U S A 2008;105:25802585.
  • 27
    Paumet F, Le Mao J, Martin S, Galli T, David B, Blank U, Roa M. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. J Immunol 2000;164:58505857.
  • 28
    Hepp R, Puri N, Hohenstein A, Crawford G, Whiteheart S, Roche P. Phosphorylation of SNAP-23 regulates exocytosis from mast cells. J Biol Chem 2005;280:66106620.
  • 29
    Suzuki K, Verma I. Phosphorylation of SNAP-23 by IkB kinase 2 regulates mast cell degranulation. Cell 2008;134:485495.
  • 30
    Roa M, Paumet F, Le Mao J, David B, Blank U. Involvement of the ras-like GTPase rab3d in RBL-2H3 mast cell exocytosis following stimulation via high affinity IgE receptors (Fc epsilonRI). J Immunol 1997;159:28152823.
  • 31
    Ludowyke R, Kawasugi K, French P. PMA and calcium ionophore induce myosin and F-actin rearrangement during histamine secretion from RBL-2H3 cells. Cell Motil Cytoskeleton 1994;29:354365.
  • 32
    Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, Miettinen M. Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells. World J Gastroenterol 2011;17:750759.
  • 33
    Yoshioka M, Fukuishi N, Iriguchi S, Ohsaki K, Yamanobe H, Inukai A, Kurihara D, Imajo N, Yasui Y, Matsui N, Tsujita T, Ishii A, Seya T, Takahama M, Akagi M. Lipoteichoic acid downregulates FcepsilonRI expression on human mast cells through Toll-like receptor 2. J Allergy Clin Immunol 2007;120:452461.
  • 34
    Bonifacino J, Perez P, Klausner R, Sandoval I. Study of the transit of an integral membrane protein from secretory granules through the plasma membrane of secreting rat basophilic leukemia cells using a specific monoclonal antibody. J Cell Biol 1986;105:516522.
  • 35
    Bonifacino JS, Yuan L, Sandoval IV. Internalization and recycling to serotonin-containing granules of the 80 K integral membrane protein exposed on the surface of secreting rat basophilic leukaemia cells. J Cell Sci 1989;92(Pt 4):701712.
  • 36
    Guo Z, Turner C, Castle D. Relocation of the t-SNARE SNAP23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 1998;94:537548.
  • 37
    Salinas E, Quintanar-Stephano A, Cordova LE, Ouintanar JL. Allergen-sensitization increases mast-cell expression of the exocytotic proteins SNAP-23 and syntaxin 4, which are involved in histamine secretion. J Investig Allergol Clin Immunol 2008;18:366371.
  • 38
    Wesolowski J, Caldwell V, Paumet F. A novel function for SNAP29 (synaptosomal-associated protein of 29 kDa) in mast cell phagocytosis. PLoS One 2012;7:e49886.
  • 39
    Cohen R, Corwith K, Holowka D, Baird B. Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca2+ wave initiation. J Cell Sci 2012;125(Pt 12):29862994.
  • 40
    Peng Y, Power MR, Li B, Lin TJ. Inhibition of IKK down-regulates antigen + IgE-induced TNF production by mast cells: a role for the IKK-IkappaB-NF-kappaB pathway in IgE-dependent mast cell activation. J Leukoc Biol 2005;77:975983.
  • 41
    Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 1999;284:309313.
  • 42
    Supajatura V, Ushio H, Nakao A, Akira S, Okumura K, Ra C, Ogawa H. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 2002;109:13511359.
  • 43
    Tiwari N, Wang C-C, Brochetta C, Ke G, Vita F, Qi Z, Rivera J, Soranzo M, Zabucchi G, Hong W, Blank U. VAMP-8 segregates mast cell preformed mediator exocytosis from cytokine trafficking pathways. Blood 2008;111:36653674.
  • 44
    Beckers C, Block M, Glick B, Rothman J, Balch W. Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein. Nature 1989;339:397398.
  • 45
    Banerjee A, Barry V, DasGupta B, Martin T. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J Biol Chem 1996;271:2022320226.
  • 46
    Fasshauer D, Otto H, Eliason WK, Jahn R, Brunger AT. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol Chem 1997;272:2803628041.
  • 47
    Fasshauer D, Bruns D, Shen B, Jahn R, Brunger AT. A structural change occurs upon binding of syntaxin to SNAP-25. J Biol Chem 1997;272:45824590.
  • 48
    Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med 2012;18:693704.
  • 49
    Polgar J, Lane WS, Chung SH, Houng AK, Reed GL. Phosphorylation of SNAP-23 in activated human platelets. J Biol Chem 2003;278:4436944376.
  • 50
    Yasuda K, Itakura M, Aoyagi K, Sugaya T, Nagata E, Ihara H, Takahashi M. PKC-dependent inhibition of Ca2+-dependent exocytosis from astrocytes. Glia 2011;59:143151.
  • 51
    Karim ZA, Zhang J, Banerjee M, Chicka MC, Al Hawas R, Hamilton TR, Roche PA, Whiteheart SW. IkappaB kinase phosphorylation of SNAP-23 controls platelet secretion. Blood 2013;121:45674574.
  • 52
    Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci U S A 1999;96:81108115.
  • 53
    Shelburne CP, Nakano H, St John AL, Chan C, McLachlan JB, Gunn MD, Staats HF, Abraham SN. Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe 2009;6:331342.
  • 54
    Abraham S, St John A. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 2010;10:440452.
  • 55
    Sandig H, Bulfone-Paus S. TLR signaling in mast cells: common and unique features. Front Immunol 2012;3:185.
  • 56
    Kasakura K, Takahashi K, Aizawa T, Hosono A, Kaminogawa S. A TLR2 ligand suppresses allergic inflammatory reactions by acting directly on mast cells. Int Arch Allergy Immunol 2009;150:359369.
  • 57
    Nigo YI, Yamashita M, Hirahara K, Shinnakasu R, Inami M, Kimura M, Hasegawa A, Kohno Y, Nakayama T. Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proc Natl Acad Sci U S A 2006;103:22862291.
  • 58
    Fuchs B, Knothe S, Rochlitzer S, Nassimi M, Greweling M, Lauenstein HD, Nassenstein C, Muller M, Ebensen T, Dittrich AM, Krug N, Guzman CA, Braun A. A Toll-like receptor 2/6 agonist reduces allergic airway inflammation in chronic respiratory sensitisation to Timothy grass pollen antigens. Int Arch Allergy Immunol 2010;152:131139.
  • 59
    Velasco G, Campo M, Manrique OJ, Bellou A, He H, Arestides RS, Schaub B, Perkins DL, Finn PW. Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am J Respir Cell Mol Biol 2005;32:218224.