Effects of systemic pretreatment with CpG oligodeoxynucleotides on skin wound healing in mice



This article is corrected by:

  1. Errata: Erratum Volume 22, Issue 1, 141, Article first published online: 6 January 2014

Reprint requests:

Dr. B. Vollmar, Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, D-18057 Rostock, Germany.

Tel: +49 381 494 2500;

Fax: +49 381 494 2502;

Email: brigitte.vollmar@med.uni-rostock.de


Unmethylated CpG oligodeoxynucleotides (ODN) bind to the Toll-like receptor 9, thus stimulating the immune system. To study the effects of systemic pretreatment with CpG ODN on dermal regeneration, C57BL6/J Tyr mice were treated with CpG or control ODN 6 days prior to implantation of a dorsal skinfold chamber and skin wounding. Wound epithelialization was analyzed by planimetric microscopy. On day 18, wound tissues were taken for (immuno)histochemical staining. CpG ODN increased epithelialization compared with control ODN treatment. Histological analysis revealed reduced capillary density, reduced wound cellularity, and reduced numbers of infiltrating leukocytes, as well as reduced F4/80-positive macrophages, but increased numbers of RELM-α-positive M2 macrophages after CpG ODN treatment, reflecting a better quality of wound healing on day 18 compared with control ODN treatment. Reverse transcription-polymerase chain reaction analysis of Toll-like receptor 9 showed the receptor expression on both fibroblasts and keratinocytes. Fibroblasts showed an increase of migration upon increasing dosages of CpG and not control ODN, reaching ∼50% of the response of basic fibroblast growth factor-exposed cells. Keratinocytes dose-dependently responded to both CpG and control ODN up to values found in keratinocyte growth factor-exposed cells. In summary, CpG ODN support late tissue-remodeling processes that contribute to resolution of inflammation and solid wounds during skin regeneration.