SEARCH

SEARCH BY CITATION

References

  • Aperia A, Eklöf AC, Holtbäck U, Nowicki S, Sundelöf M & Greengard P (1998). The renal dopamine system. Adv Pharmacol 42, 870873.
  • Caruso-Neves C, Coelho-Souza SA, Vives D, Goes G, Lara LS & Lopes AG (2002). Modulation of ouabain-insensitive Na+-ATPase activity in the renal proximal tubule by Mg2+, MgATP and furosemide. Int J Biochem Cell Biol 34, 15861593.
  • Caruso-Neves C, Lara LS, Rangel LB, Grossi AL & Lopes AG (2000). Angiotensin-(1–7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim Biophys Acta 1467, 189197.
  • Caruso-Neves C, Malaquias AT, Lóss FF, Corrêa da Costa VM, Gomes VO & Lopes AG (2003). Bradykinin B1 receptor stimulates the proximal tubule Na+-ATPase activity through protein kinase C pathway. Regul Pept 115,195201.
  • Caruso-Neves C, Vives D, Dantas C, Albino CM, Fonseca LM, Lara LS, Isso M & Lopes AG (2004). Ouabain-insensitive Na+-ATPase of proximal tubules is an effector for urodilatin and atrial natriuretic peptide. Biochim Biophys Acta 1660, 9398.
  • Catz SD, Speziale EH & Sterin-Speziale NB (1998). Polyphosphoinositide synthesis in human neutrophils. Effect of a low metabolic state. Prostaglandins Other Lipid Mediat 55, 245– 264.
  • Chappell MC, Modrall JG, Diz DI & Ferrario CM (2004). Novel aspects of the renal renin-angiotensin system: angiotensin-(1–7), ACE2 and blood pressure regulation. Contrib Nephrol 143, 7789.
  • Coka-Guevara S, Markus RP, Caruso-Neves C, Lopes AG & Vieyra A (1999). Adenosine inhibits the renal plasma-membrane (Ca2++ Mg2+)-ATPase through a pathway sensitive to cholera toxin and sphingosine. Eur J Biochem 263, 7178.
  • De Gasparo M, Catt KJ, Inagami T, Wright JW & Unger T (2000). International Union of Pharmacology: XXIII. The angiotensin II receptors. Pharmacol Rev 52, 415– 472.
  • De Souza AM, Carvalho TL, Sabino PM, Vives D, Fontes CF, Lopes AG & Caruso-Neves C (2007). Characterization and partial isolation of ouabain-insensitive Na+-ATPase in MDCK I cells. Biochimie 89, 14251432.
  • De Souza AM, Lopes AG, Pizzino CP, Fossari RN, Miguel NC, Cardozo FP, Abi-Abib R, Fernandes MS, Santos DP & Caruso-Neves C (2004). Angiotensin II and angiotensin-(1–7) inhibit the inner cortex Na+-ATPase activity through AT2 receptor. Regul Pept 120, 167175.
  • Douglas JG & Hopfer U (1994). Novel aspects of angiotensin receptors and signal transduction in the kidney. Annu Rev Physiol 56, 649669.
  • Feraille E & Doucet A (2001). Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81, 345418.
  • Ferrario CM, Trask AJ & Jessup JA (2005). Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 289, H2281H2290.
  • Garcia NH & Garvin JL (1994). Angiotensin 1–7 has a biphasic effect on fluid absorption in the proximal straight tubule. J Am Soc Nephrol 5,11331138.
  • Giani JF, Gironacci MM, Muñoz MC, Peña C, Turyn D & Dominici FP (2007). Angiotensin-(1–7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. Am J Physiol Heart Circ Physiol 293, H1154H1163.
  • Grassl MS & Aronson PS (1986). Na+/HCO3co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem 261, 87788783.
  • Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK & Katovich MJ (2007). Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol 292, H736H742.
  • Grubmeyer C & Penefsky HS (1981). The presence of two hydrolytic sites on beef heart mitochondrial adenosine triphosphate. J Biol Chem 256, 37183727.
  • Handa RK, Ferrario CM & Strandhoy JW (1996). Renal actions of angiotensin-(1–7): in vivo and in vitro studies. Am J Physiol Renal Physiol 270, F141F147.
  • Horwitz J & Perlman RL (1987). Measurement of inositol phospholipid metabolism in PC12 pheochromocytoma cells. Methods Enzymol 141,169175.
  • Houillier P, Chambrey R, Achard JM, Froissart M, Poggioli J & Paillard M (1996). Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int 50, 14961505.
  • Inagami T & Harris RC (1993). Molecular insights into angiotensin II receptor subtypes. NIPS 8, 215218.
  • Lara LS, Bica RB, Sena SL, Correa JS, Marques-Fernandes MF, Lopes AG & Caruso-Neves C (2002). Angiotensin-(1–7) reverses the stimulatory effect of angiotensin II on the proximal tubule Na+-ATPase activity via an A779-sensitive receptor. Regul Pept 103, 1722.
  • Lara LS, Cavalcante F, Axelband F, De Souza AM, Lopes AG & Caruso-Neves C (2006) Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1–7). Biochem J 395, 183190.
  • Lara LS, De Carvalho T, Leão-Ferreira LR, Lopes AG & Caruso-Neves C (2005). Modulation of the (Na++ K+)ATPase activity by Angiotensin-(1–7) in MDCK cells. Regul Pept 129, 221226.
  • Li N, Zimpelmann J, Cheng K, Wilkins JA & Burns KD (2005). The role of angiotensin converting enzyme 2 in the generation of angiotensin 1–7 by rat proximal tubules. Am J Physiol Renal Physiol 288, F353F362.
  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.
  • Magaldi AJ, César KR, De Araújo M, Simões e Silva AC & Santos RA (2003). Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflugers Arch 447, 223230.
  • Maia JC, Gomes SL & Juliani MH (1993). Preparation of (γ-32P)- and (α-32P)-nucleoside triphosphates with high specific activity. In Genes and Antigens of Parasites: a Laboratory Manual, ed Morel C, pp. 139146, Fundação Oswaldo Cruz, Rio de Janeiro .
  • Malaquias AT & Oliveira MM (1999). Phospholipid signalling in Trypanosoma cruzi growth control. Acta Trop 73, 93108.
  • Proverbio F, Marín R & Proverbio T (1989). The “second” sodium pump and cell volume. Curr Top Membr Transp 34, 105119.
  • Rangel LB, Caruso-Neves C, Lara LS, Brasil FL & Lopes AG (1999). Angiotensin II activates the ouabain-insensitive Na+-ATPase from renal proximal tubules through a G-protein. Biochim Biophys Acta 1416, 309319.
  • Rangel LB, Lopes AG, Lara LS, Carvalho TL, Silva IV, Oliveira MM, Einicker-Lamas M, Vieyra A, Nogaroli L & Caruso-Neves C (2005). PI-PLCβ is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. Regul Pept 127, 177182.
  • Rangel LB, Malaquias AT, Lara LS, Silva IV, De Souza AM, Lopes AG & Caruso-Neves C (2001). Protein kinase C-induced phosphorylation modulates the Na+-ATPase activity from proximal tubules. Biochim Biophys Acta 1512, 9097.
  • Rhee SG (2001). Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70, 281312.
  • Rice GI, Thomas DA, Grant PJ, Turner AJ & Hooper NM (2004). Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383, 4551.
  • Santos RA, Campagnole-Santos MJ & Andrade SP (2000). Angiotensin-(1–7): an update. Regul Pept 91, 4562.
  • Santos RA, Ferreira AJ, Pinheiro SVB, Sampaio WO, Touyz R & Campagnole-Santos MJ (2005). Angiotensin-(1–7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs 14, 10191031.
  • Simões e Silva AC, Pinheiro SV, Pereira RM, Ferreira AJ & Santos RA (2006). The therapeutic potential of angiotensin-(1–7) as a novel renin-angiotensin system mediator. Mini Rev Med Chem 6, 603609.
  • Vieyra A, Nachbin L, De Dios-Abad E, Meyer-Fernandes JR & Moraes L (1986). Comparison between calcium transport and adenosine triphosphatase activity in membrane vesicles derived from rabbit kidney proximal tubules. J Biol Chem 281, 42474255.