Specific control of sympathetic nerve activity to the mammalian heart and kidney


Corresponding author C. N. May: Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia.  Email: clive.may@florey.edu.au


There is a large body of evidence indicating that sympathetic nerves to individual organs are specifically controlled, but only few studies have compared the control of cardiac sympathetic nerve activity (CSNA) with activity in other sympathetic nerves. In this review, changes in sympathetic activity to the heart and kidneys are described during increases in brain [Na+] and in heart failure (HF). In conscious sheep, increases in brain [Na+] increased CSNA and arterial pressure and, conversely, decreased renal sympathetic nerve activity (RSNA), promoting urinary sodium loss. These organ-specific effects are mediated via a neural pathway that includes an angiotensinergic synapse, the lamina terminalis and the paraventricular nucleus of the hypothalamus. There is also evidence of differential control of SNA in HF. In normal sheep, the resting burst incidence of CSNA was much lower than that of RSNA, whereas in HF they increased to similar, almost maximal levels in both nerves. Arterial baroreflex control of both these nerves was unchanged in HF, but the response of CSNA to changes in blood volume was almost absent. These data indicate that in HF the lower arterial pressure leads to reduced baroreflex inhibition of SNA, which, together with the lack of an inhibitory response to the increased volume and cardiac pressures, would contribute to the sympathoexcitation observed. These studies demonstrate differences in the control of CSNA and RSNA, enabling selective actions on the heart and kidney to restore fluid and electrolyte homeostasis in the case of elevated brain [Na+] and to increase cardiac output in HF.