SEARCH

SEARCH BY CITATION

References

  • Arnaudeau, S., Boittin, F. X., MacreZ, N., Lavie, J. L., Mironneau, C. & Mironneau, J. (1997). L-type and Ca2+ release channel-dependent hierarchical Ca2+ signalling in rat portal vein myocytes. Cell Calcium 22, 399411.
  • Ascher-Landsberg, J., Saunders, T., ElovitZ, M. & Phillippe, M. (1999). The effects of 2-aminoethoxydiphenyl borate, a novel inositol 1,4,5-trisphosphate receptor modulator on myometrial contractions. Biochemical and Biophysical Research Communications 264, 979982.
  • Balke, C. W. & Wier, W. G. (1991). Ryanodine does not affect calcium current in guinea pig ventricular myocytes in which Ca2+ is buffered. Circulation Research 68, 897902.
  • Baro, I. & Eisner, D. A. (1992). The effect of thapsigargin on [Ca2+]i in isolated rat mesenteric artery vascular smooth muscle cells. Pflügers Archiv 420, 115117.
  • Bayguinov, O., Hagen, B., Bonev, A. D., Nelson, M. T. & Sanders, K. M. (2000). Intracellular calcium events activated by ATP in murine colonic myocytes. American Journal of Physiology – Cell Physiology 279, C126135.
  • Berridge, M. J. (1997). Elementary and global aspects of calcium signalling. Journal of Physiology 499, 291306.
  • Boittin, F. X., Coussin, F., MacreZ, N., Mironneau, C. & Mironneau, J. (1998). Inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channel-dependent Ca2+ signalling in rat portal vein myocytes. Cell Calcium 23, 303311.
  • Boittin, F. X., Coussin, F., Morel, J. L., Halet, G., MacreZ, N. & Mironneau J. (2000). Ca2+ signals mediated by Ins(1, 4, 5)P3 -gated channels in rat ureteric myocytes. Biochemical Journal 349, 323332.
  • Boittin, F. X., MacreZ, N., Halet, G. & Mironneau, J. (1999). Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes. American Journal of Physiology 277, C139151.
  • Bolton, T. B. & Gordienko, D. V. (1998). Confocal imaging of calcium release events in single smooth muscle cells. Acta Physiologica Scandinavica 164, 567575.
  • Bolton, T. B., Gordienko, D. V., Pucovsky, V., Parsons, S. & Povstyan, O. (2002). Calcium release events in excitation-contraction coupling in smooth muscle. In Role of the Sarcoplasmic Reticulum in Smooth Muscle, ed. Eisner, D. Wiley, Sussex , UK (in the Press)
  • Bolton, T. B., Prestwich, S. A., Zholos, A. V. & Gordienko, D. V. (1999). Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annual Review of Physiology 61, 85115.
  • Bootman, M. D., Cheek, T. R., Moreton, R. B., Bennett, D. L. & Berridge, M. J. (1994). Smoothly graded Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. Journal of Biological Chemistry 269, 2478324791.
  • Bridge, J. H, Ershler, P. R & Cannell, M. B. (1999). Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes. Journal of Physiology 518, 469478.
  • Burdyga, T. V., Taggart, M. J., Crichton, C., Smith, G. L. & Wray, S. (1998). The mechanism of Ca2+ release from the SR of permeabilised guinea-pig and rat ureteric smooth muscle. Biochimica et Biophysica Acta 1402, 109114.
  • Cheng, H., Lederer, W. J. & Cannell, M. B. (1993). Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740744.
  • Cheng, H., Lederer, M. R., Lederer, W. J. & Cannell, M. B. (1996). Calcium sparks and [Ca2+]i waves in cardiac myocytes. American Journal of Physiology 270, C148159.
  • Cheng, H., Song, L.-H., Shirokova, N., GonzáleZ, A., Lakatta, E. G., Ríos, E. & Stern, M. D. (1999). Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophysical Journal 76, 606617.
  • De Smet, P., Parys, J. B., Callewaert, G., Weidema, A. F., Hill, E., De Smedt, H., Erneux, C., Sorrentino, V. & Missiaen, L. (1999). Xestospongin C is an equally potent inhibitor of the inositol 1, 4, 5-trisphosphate receptor and the endoplasmic-reticulum Ca2+ pumps. Cell Calcium 26, 913.
  • Du, G. G., Guo, X., Khanna, V. K. & MacLennan, D. H. (2001). Ryanodine sensitizes the cardiac Ca2+ release channel (ryanodine receptor isoform 2) to Ca2+ activation and dissociates as the channel is closed by Ca2+ depletion. Proceedings of the National Academy of Sciences of the USA 98, 1362513630.
  • Flynn, E. R. M., Bradley, K. N., Muir, T. C. & McCarron, J. G. (2001). Functionally separate intracellular Ca2+ stores in smooth muscle. Journal of Biological Chemistry 276, 3641136418.
  • Golovina, V. A. & Blaustein, M. P. (1997). Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 16431648.
  • Gordienko, D. V., Bolton, T. B. & Cannell, M. B. (1998). Variability in spontaneous subcellular calcium release in guinea-pig ileum smooth muscle cells. Journal of Physiology 507, 707720.
  • Gordienko, D. V., Greenwood, I. A. & Bolton, T. B. (2001). Direct visualization of sarcoplasmic reticulum regions discharging Ca2+ sparks in vascular myocytes. Cell Calcium 29, 1328.
  • Gordienko, D. V., Zholos, A. V. & Bolton, T. B. (1999). Membrane ion channels as physiological targets for local Ca2+ signalling. Journal of Microscopy 196, 305316.
  • Greenwood, I. A., Gordienko, D. V., Large, W. A. & Bolton, T. B. (1999). Comparison of the time course of spontaneous currents and calcium events in smooth muscle cells of the rabbit portal vein. Journal of Physiology 521. P, 58P.
  • Hirose, K., Kadowaki, S. & Iino, M. (1998). Allosteric regulation by cytoplasmic Ca2+ and IP3 of the gating of IP3 receptors in permeabilized guinea-pig vascular smooth muscle cells. Journal of Physiology 506, 407414.
  • Imaizumi, Y., Torii, Y., Ohi, Y., Nagano, N., Atsuki, K., Yamamura, H., Muraki, K., Watanabe, M. & Bolton, T. B. (1998). Ca2+ images and K+ current during depolarization in smooth muscle cells of the guinea-pig vas deferens and urinary bladder. Journal of Physiology 510, 705719.
  • Isenberg, G. & Han, S. (1994). Gradation of Ca2+-induced Ca2+ release by voltage-clamp pulse duration in potentiated guinea-pig ventricular myocytes. Journal of Physiology 480, 423438.
  • Janiak, R., Wilson, S. M., Montague, S. & Hume, J. R. (2001). Heterogeneity of calcium stores and elementary release events in canine pulmonary arterial smooth muscle cells. American Journal of Physiology – Cell Physiology 280, C2233.
  • Keizer, J., Smith, G. D., Ponce-Dawson, S. & Pearson, J. E. (1998). Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophysical Journal 75, 595600.
  • Klein, M. G., Cheng, H., Santana, L. F., Jiang, Y.-H., Lederer, W. J. & Schneider, M. F. (1996). Two mechanisms of quantized calcium release in skeletal muscle. Nature 379, 455458.
  • Komori, S. & Bolton, T. B. (1991). Calcium release induced by inositol 1, 4, 5-trisphosphate in single rabbit intestinal smooth muscle cells. Journal of Physiology 433, 495517.
  • Komori, S., Itagaki, M., Unno, T. & Ohashi, H. (1995). Caffeine and carbachol act on common Ca2+ stores to release Ca2+ in guinea-pig ileal smooth muscle. European Journal of Pharmacology 277, 173180.
  • Lacampagne, A., Ward, C. W., Klein, M. G. & Schneider, M. F. (1999). Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution. Journal of General Physiology 113, 187198.
  • Leighton, T., Izu, W., Wier, G. & Balke, C. W. (2001). Evolution of cardiac calcium waves from stochastic calcium sparks. Biophysical Journal 80, 103120.
  • Lesh, R. E., Nixon, G. F., Fleischer, S., Airey, J. A., Somlyo, A. P. & Somlyo, A. V. (1998). Localization of ryanodine receptors in smooth muscle. Circulation Research 82, 175185.
  • Löhn, M., Fürstenau, M., Sagach, V., Elger, M., Schulze, W., Luft, F. C., Haller, H. & Gollasch, M. (2000). Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circulation Research 87, 10341039.
  • Maruyama, T., Kanaji, T., Nakade, S., Kanno, T. & Mikoshiba, K. (1997). 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. Journal of Biochemistry 122, 498505.
  • Mauban, J. R., Lamont, C., Balke, C. W. & Wier, W. G. (2001). Adrenergic stimulation of rat resistance arteries affects Ca2+ sparks, Ca2+ waves, and Ca2+ oscillations. American Journal of Physiology – Heart and Circulatory Physiology 280, H23992405.
  • Mironneau, J., Arnaudeau, S., MacreZ-Lepretre, N. & Boittin, F. X. (1996). Ca2+ sparks and Ca2+ waves activate different Ca2+-dependent ion channels in single myocytes from rat portal vein. Cell Calcium 20, 153160.
  • Missiaen, L., Callewaert, G., De Smedt, H. & Parys, J. B. (2001). 2-Aminoethoxydiphenyl borate affects the inositol 1, 4, 5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium 29, 111116.
  • Nelson, M. T., Cheng, H., Rubart, M., Santana, L. F., Bonev, A. D., Knot, H. J. & Lederer, W. J. (1995). Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633637.
  • Ohi, Y., Yamamura, H., Nagano, N., Ohya, S., Muraki, K., Watanabe, M. & Imaizumi, Y. (2001). Local Ca2+ transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guinea-pig vas deferens and urinary bladder. Journal of Physiology 534, 313326.
  • Pacaud, P. & Loirand, G. (1995). Release of Ca2+ by noradrenaline and ATP from the same Ca2+ store sensitive to both InsP3 and Ca2+ in rat portal vein myocytes. Journal of Physiology 484, 549555.
  • Pratusevich, V. R. & Balke, V. W. (1996). Factors shaping the confocal image of the calcium spark in cardiac muscle cells. Biophysical Journal 71, 29422957.
  • Prestwich, S. A. & Bolton, T. B. (1991). Measurement of picomole amounts of any inositol phosphate isomer separable by h. p.l.c. by means of a bioluminescence assay. Biochemical Journal 274, 663672.
  • Pucovsky, V., Gordienko, D. V. & Bolton, T. B. (2002). Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea-pig small mesenteric arteries. Journal of Physiology 539, 2539.
  • Ríos, E., Shirokova, N., Kirsch, W. G., Pizarro, G., Stern, M. D., Cheng, H. & GonzáleZ, A. (2001). A preferred amplitude of calcium sparks in skeletal muscle. Biophysical Journal 80, 169183.
  • Sergeant, G. P., Hollywood, M. A., McCloskey, K. D., McHale, N. G. & Thornbury, K. D. (2001). Role of IP3 in modulation of spontaneous activity in pacemaker cells of rabbit urethra. American Journal of Physiology – Cell Physiology 280, C13491356.
  • Sutko, J. L., Airey, J. A., Welch, W. & Ruest, L. (1997). The pharmacology of ryanodine and related compounds. Pharmacological Reviews 49, 5398.
  • Sutter, M. C. (1990). The mesenteric-portal vein in research. Pharmacological Reviews 42, 287325.
  • Tasker, P. N., Michelangeli, F. & Nixon, G. F. (1999). Expression and distribution of type 1 and type 3 inositol 1,4,5-trisphosphate receptor in developing vascular smooth muscle. Circulation Research 84, 536542.
  • Tasker, P. N., Taylor, C. W. & Nixon, G. F. (2000). Expression and distribution of InsP3 receptor subtypes in proliferating vascular smooth muscle cells. Biochemical and Biophysical Research Communications 273, 907912.
  • Wibo, M. & Godfraind, T. (1994). Comparative localization of inositol 1, 4, 5-trisphosphate and ryanodine receptors in intestinal smooth muscle: an analytical subfractionation study. Biochemical Journal 297, 415423.
  • Wier, W. G. & Balke, C. W. (1999). Ca2+ release mechanisms, Ca2+ sparks, and local control of excitation-contraction coupling in normal heart muscle. Circulation Research 85, 770776.
  • Zholos, A. V., Komori, S., Ohashi, H. & Bolton, T. B. (1994). Ca2+ inhibition of inositol trisphosphate-induced Ca2+ release in single smooth muscle cells of guinea-pig small intestine. Journal of Physiology 481, 97109.
  • ZhuGe, R., Sims, S. M., Tuft, R. A., Fogarty, K. E. & Walsh, J. V. Jr (1998). Ca2+ sparks activate K+ and Cl channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. Journal of Physiology 513, 711718.
  • Zhuge, R., Tuft, R. A., Fogarty, K. E., Bellve, K., Fay, F. S. & Walsh, J. V. Jr (1999). The influence of sarcoplasmic reticulum Ca2+ concentration on Ca2+ sparks and spontaneous transient outward currents in single smooth muscle cells. Journal of General Physiology 113, 215228.