SEARCH

SEARCH BY CITATION

References

  • Adeagbo, A. S. O. (1999). 1-Ethyl-2-benzimidazolinone stimulates endothelial KCa channels and nitric oxide formation in rat mesenteric vessels. European Journal of Pharmacology 379, 151159.
  • AlvareZ, J., Montero, M. & Garcia-Sancho, J. (1992). High affinity inhibition of Ca2+-dependent K+ channels by cytochrome P-450 inhibitors. Journal of Biological Chemistry 267, 1178911793.
  • Baron, A., Frieden, M. & Bény, J.-L. (1997). Epoxyeicosatrienoic acids activate a high-conductance, Ca2+-dependent K+ channel on pig coronary artery endothelial cells. Journal of Physiology 504, 537543.
  • Campbell, W. B., Gebremedhin, D., Pratt, P. F. & Harder, D. R. (1996). Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circulation Research 78, 415423.
  • Coleman, H. A., Tare, M. & Parkington, H. C. (2001a). K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels. Journal of Physiology 531, 359373.
  • Coleman, H. A., Tare, M. & Parkington, H. C. (2001b). EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles. American Journal of Physiology 280, H24782483.
  • De Vriese, A. S., Van de Voorde, J. & Lameire, N. H. (2002). Effects of connexin-mimetic peptides on nitric oxide synthase- and cyclooxygenase-independent renal vasodilatation. Kidney International 61, 177185.
  • De Wit, C., Esser, N., Lehr, H., BolZ, S. & Pohl., U. (1999). Pentobarbital-sensitive EDHF comediates ACh-induced arteriolar dilatation in the hamster microcirculation. American Journal of Physiology 276, H15271534.
  • Doughty, J. M., Plane, F. & Langton, P. D. (1999). Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. American Journal of Physiology 276, H11071112.
  • Eckman, D. M., Hopkins, N., McBride, C. & Keef, K. D. (1998). Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: role of epoxyeicosatrienoic acid. British Journal of Pharmacology 124, 181189.
  • Edwards, G., Dora, K. A., Gardener, M. J., Garland, C. J. & Weston, A. H. (1998). K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396, 269272.
  • Edwards, G., Gardener, M. J., Félétou, M., Brady, G., Vanhoutte, P. M. & Weston, A. H. (1999). Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain. British Journal of Pharmacology 128, 10641070.
  • Evans, R. G., Madden, A. C. & Denton, K. M. (2000). Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits. Acta Physiologica Scandinavica 169, 297308.
  • Fleming, I. (2001). Cytochrome P-450 enzymes in vascular homeostasis. Circulation Research 89, 753762.
  • Gardiner, S. M., Compton, A. M., Bennett, T., Palmer, R. M. J. & Moncada, S. (1989). NG-monomethyl-l-arginine does not inhibit the hindquarters vasodilator action of endothelin-1 in conscious rats. European Journal of Pharmacology 171, 237240.
  • Gardiner, S. M., Kemp, P. A. & Bennett, T. (1991). Effect of NG-nitro-l-arginine methyl ester on vasodilator responses to acetylcholine, 5′-N-ethylcarboxamidoadenosine or salbutamol in conscious rats. British Journal of Pharmacology 103, 17251732.
  • Garland, C. J., Plane, F., Kemp, B. K. & Cocks, T. M. (1995). Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends in Pharmacological Science 16, 2330.
  • Hecker, M., Bara, A. T., Bauersachs, J. & Busse, R. (1994). Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. Journal of Physiology 481, 407414.
  • Hill, C. E., Phillips, J. K. & Sandow, S. L. (2001). Heterogeneous control of blood flow amongst different vascular beds. Medical Research Reviews 21, 160.
  • Hungerford, J. E., Sessa, W. C. & Segal, S. S. (2000). Vasomotor control in arterioles of the mouse cremaster muscle. FASEB Journal 14, 197207.
  • Hwa, J., Ghibaudi, L., Williams, P. & Chatterjei, M. (1994). Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed. American Journal of Physiology 266, H952958.
  • Jackson, W. F. & Blair, K. L. (1998). Characterization and function of Ca2+-activated K+ channels in arteriolar muscle cells. American Journal of Physiology 274, H2734.
  • Lefroy, D. C., Crake, T., Uren, N. G., Davies, G. J. & Maseri, A. (1993). Effect of inhibition of nitric oxide synthesis on epicardial coronary artery calibre and coronary blood flow in humans. Circulation 88, 4354.
  • Lischke, V., Busse, R. & Hecker, M. (1995). Selective inhibition by barbiturates of the synthesis of endothelium-derived hyperpolarizing factor in the rabbit carotid artery. British Journal of Pharmacology 115, 969974.
  • Nagao, T., Illiano, S. & Vanhoutte, P. M. (1992). Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-l-arginine in rats. American Journal of Physiology 263, H10901094.
  • Nishikawa, Y., Stepp, D. W. & Chilian, W. M. (1999). In vivo location and mechanism of EDHF-mediated vasodilatation in canine coronary microcirculation. American Journal of Physiology 277, H12521259.
  • Plane, F., Holland, M., Waldron, G. J., Garland, C. J. & Boyle, J. P. (1997). Evidence that anandamide and EDHF act via different mechanisms in rat isolated mesenteric arteries. British Journal of Pharmacology 121, 15091511.
  • Sandow, S. L. & Hill, C. E. (2000). Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circulation Research 86, 341346.
  • Sandow, S. L., Tare, M., Coleman, H. A., Hill, C. E. & Parkington, H. C. (2002). Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor. Circulation Research 90, 11081113.
  • Shimokawa, H., Yasutake, H., Fujii, K., Owada, K., Nakaike, R., Fukumoto, Y., Takayanagi, T., Nagao, T., Egashira, K., Fujishima, M. & Takeshita, A. (1996). The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. Journal of Cardiovascular Pharmacology 28, 703711.
  • Taylor, S. G. & Weston, A. H. (1988). Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends in Pharmacological Sciences 9, 272274.
  • Vallance, P., Collier, J. & Moncada, S. (1989). Effect of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet ii, 9971000.
  • Vanheel, B. & Van de Voorde, J. (1997). Evidence against the involvement of cytochrome P450 metabolites in endothelium-dependent hyperpolarization of the rat main mesenteric artery. Journal of Physiology 501, 331341.
  • Walker, S. D., Dora, K. A., Ings, N. T., Crane, G. L. & Garland, C. J. (2001). Activation of endothelial cell IKCa with 1-ethyl-2-benzimidazolinone evokes smooth muscle hyperpolarization in rat isolated mesenteric artery. British Journal of Pharmacology 134, 15481554.
  • Widmann, M. D., Weintraub, N. L., Fudge, J. L., Brooks, L. A. & Dellsperger, K. C. (1998). Cytochrome P-450 pathway in acetylcholine-induced canine coronary microvascular vasodilatation in vivo. American Journal of Physiology 274, H283289.
  • Wigg, S. J., Tare, M., Tonta, M. A., O'Brien, R. C., Meredith, I. T. & Parkington, H. C. (2001). Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery. American Journal of Physiology 281, H232240.
  • Woodman, O. L., Wongsawatkul, O. & Sobey, C. G. (2000). Contribution of nitric oxide, cyclic GMP and K+ channels to acetylcholine-induced dilatation of rat conduit and resistance arteries. Clinical and Experimental Pharmacology and Physiology 27, 3440.
  • Yamamoto, Y., Fukuta, H., Nakahira, Y. & Suzuki, H. (1998). Blockade by 18β-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles. Journal of Physiology 511, 501508.
  • Zou, A., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gebremedhin, D., Harder D. R. & Roman, R. J. (1996). Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K+-channel activity. American Journal of Physiology 270, F822832.
  • Zygmunt, P. M. & Högestätt, E. D. (1996). Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. British Journal of Pharmacology 117, 16001606.
  • Zygmunt, P. M., Ryman, T. & Högestätt, E. D. (1995). Regional differences in endothelium-dependent relaxation in the rat – contribution of nitric oxide and nitric oxide-independent mechanisms. Acta Physiologica Scandinavica 155, 257266.