SEARCH

SEARCH BY CITATION

References

  • Arthur, G. D., Booker, T. S. & Belcastro, A. N. (1999). Exercise promotes a subcellular redistribution of calcium-stimulated protease activity in striated muscle. Canadian Journal of Physiology and Pharmacology 77, 4247.
  • Bailey, J. L. & Mitch, W. E. (2000). Mechanisms of protein degradation: what do the rat studies tell us? Journal of Nephrology 13, 8995.
  • Baracos, V. E., Greenberg, R. E. & Goldberg, A. L. (1986). Influence of calcium and other divalent cations on protein turnover in rat skeletal muscle. American Journal of Physiology 250, E702710.
  • Barnoy, S., Glaser, T. & Kosower, N. S. (1996). The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochemical and Biophysical Research Communications 220, 933938.
  • Barnoy, S., Supino-Rosin, L. & Kosower, N. S. (2000). Regulation of calpain and calpastatin in differentiating myoblasts: mRNA levels, protein synthesis and stability. Biochemical Journal 351, 413420.
  • Belcastro, A. N. (1993). Skeletal muscle calcium activated neutral protease (calpain) with exercise. Journal of Applied Physiology 74, 13811386.
  • Bodine, S. C., Latres, E., Baumhueter, S., Lai, V. K., Nunez, L., Clarke, B. A., Poueymirou, W. T., Panaro, F. J., Na, E., Dharmarajan, K., Pan, Z. Q., Valenzuela, D. M., DeChiara, T. M., Stitt, T. N., Yancopoulos, G. D. & Glass, D. J. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 17041708.
  • Brennan, K. J. & Hardeman, E. C. (1993). Quantitative analysis of the human alpha-skeletal actin gene in transgenic mice. Journal of Biological Chemistry 268, 719725.
  • Burkholder, T. J., Fingado, B., Baron, S. & Lieber, R. L. (1994). Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. Journal of Morphology 221, 177190.
  • Burnette, W. N. (1981). ‘Western blotting’: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 112, 195203.
  • Caiozzo, V. J., Haddad, F., Baker, M. J. & Baldwin, K. M. (1995). Functional and cellular adaptations of rodent skeletal muscle to weightlessness. Journal of Gravitational Physiology 2, 3942.
  • Carlson, C. J., Booth, F. W. & Gordon, S. E. (1999). Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. American Journal of Physiology 277, R601606.
  • Crawford, G. E., Faulkner, J. A., Crosbie, R. H., Campbell, K. P., Froehner, S. C. & Chamberlain, J. S. (2000). Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. Journal of Cell Biology 150, 13991410.
  • Croall, D. E. & DeMartino, G. N. (1991). Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiological Reviews 71, 813847.
  • Croall, D. E., Moffett, K. & Hatch, H. (2002). Casein zymography of calpains using a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-imidazole buffer. Analytical Biochemistry 304, 129132.
  • Dupont-Versteegden, E. E., Houle, J. D., Gurley, C. M. & Peterson, C. A. (1998). Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. American Journal of Physiology 275, C11241133.
  • Emery, A. E. (2002). The muscular dystrophies. Lancet 359, 687695.
  • Furuno, K. & Goldberg, A. L. (1986). The activation of protein degradation in muscle by calcium or muscle injury does not involve a lysosomal mechanism. Biochemical Journal 237, 859864.
  • Furuno, K., Goodman, M. N. & Goldberg, A. L. (1990). Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. Journal of Biological Chemistry 265, 85508557.
  • Galvagni, F., Cartocci, E. & Oliviero, S. (1998). The dystrophin promoter is negatively regulated by YY1 in undifferentiated muscle cells. Journal of Biological Chemistry 273, 3370833713.
  • Goll, D. E., Dayton, W. R., Singh, I. & Robson, R. M. (1991). Studies of the α-actinin/actin interaction in the Z-disk by using calpain. Journal of Biological Chemistry 266, 85018510.
  • Hara, K., Ichihara, Y. & Takahashi, K. (1983). Purification and characterization of a calcium-activated neutral protease from monkey cardiac muscle. Journal of Biochemistry 93, 14351445.
  • Hauschka, E. O., Roy, R. R. & Edgerton, V. R. (1987). Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension. Journal of Applied Physiology 62, 23382347.
  • Huang, J. & Forsberg, N. E. (1998). Role of calpain in skeletal-muscle protein degradation. Proceedings of the National Academy of Sciences of the USA 95, 1210012105.
  • Ikemoto, M., Nikawa, T., Takeda, S., Watanabe, C., Kitano, T., Baldwin, K. M., Izumi, R., Nonaka, I., Towatari, T., Teshima, S., Rokutan, K. & Kishi, K. (2001). Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chanin in association with activation of ubiquitin-proteasome pathway. FASEB Journal 10 1096/fj. 000629fje.
  • Imajoh, S., Kawasaki, H. & Suzuki, K. (1986). Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit. Journal of Biochemistry 99, 12811284.
  • Ishiura, S., Sugita, H., Suzuki, K. & Imahori, K. (1979). Studies of a calcium-activated neutral protease from chicken skeletal muscle. II. Substrate specificity. Journal of Biochemistry 86, 579581.
  • Jankala, H., Harjola, V.-P., Petersen, N. E. & Harkonen, M. (1998). Myosin heavy chain mRNA transforms to faster isoforms in immobilized skeletal muscle: a quantitative PCR study. Journal of Applied Physiology 82, 977982.
  • Kim, K., Homma, Y., Ikeuchi, Y. & Suzuki, A. (1995). Cleavage of connectin by calpain and cathepsin D. Bioscience, Biotechnology and Biochemistry 59, 896899.
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., Michael, L. F., Puigserver, P., Isotani, E., Olson, E. N., Lowell, B. B., Bassel-Duby, R. & Spiegelman, B. M. (2002). Transcriptional co-activator PGC-1 α drives the formation of slow-twitch muscle fibres. Nature 418, 497601.
  • Medina, R., Wing, S. S. & Goldberg, A. L. (1995). Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochemical Journal 307, 631637.
  • Michel, R. N., Parry, D. J. & Dunn, S. E. (1996). Regulation of myosin heavy chain expression in adult rat hindlimb muscles during short-term paralysis comparison of denervation and tetrodotoxin-induced neural inactivation. FEBS Letters 391, 3944.
  • Minamide, L. S. & Bamburg, J. R. (1990). A filter paper dye-binding assay for quantitative determination of protein without interference from reducing agents or detergents. Analytical Biochemistry 190, 6670.
  • Mitch, W. E., Bailey, J. L., Wang, X., Jurkovitz, C., Newby, D. & Price, S. R. (1999). Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting. American Journal of Physiology 276, C11321138.
  • Miu, B., Martin, T. P., Roy, R. R., Oganov, V., Ilyina-Kakueva, E., Marini, J. F., Leger, J. J., Bodine-Fowler, S. C. & Edgerton, V. R. (1990). Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887. FASEB Journal 4, 6472.
  • Morey-Holton, E. R. & Globus, R. K. (2002). Hindlimb unlaoding rodent model: technical aspects. Journal of Applied Physiology 92, 13671377.
  • Oda, A., Wakao, H. & Fujita, H. (2002). Calpain is a signal transducer and activator of transcription (STAT) 3 and STAT 5 protease. Blood 99, 18501852.
  • Olson, E. N. & Williams, R. S. (2000). Remodeling muscles with calcineurin. BioEssays 22, 510519.
  • Pariat, M., Salvat, C., Bebien, M., Brockly, F., Altieri, E., Carillo, S., Jariel-Encontre, I. & Piechaczyk, M. (2000). The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers. Biochemical Journal 345, 129138.
  • Pemrick, S. M. & Grebenau, R. C. (1984). Qualitative analysis of skeletal myosin as substrate of calcium-activated neutral protease: comparison of filamentous and soluble, native, and L2-deficient myosin. Journal of Cell Biology 99, 22972308.
  • Reid, W. D. & Belcastro, A. N. (2000). Time course of diaphragm injury and calpain activity during resistive loading. American Journal of Respiratory and Critical Care Medicine 162, 18011806.
  • Riley, D. A., Ellis, S., Giometti, C. S., Hoh, J. F., Ilyina-Kakueva, E. I., Oganov, V. S., Slocum, G. R., Bain, J. L. & Sedlak, F. R. (1992). Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading. Journal of Applied Physiology 73, S3343.
  • Rodemann, H. P., Waxman, L. & Goldberg, A. L. (1982). The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease. Journal of Biological Chemistry 257, 87168723.
  • Ruff, R. L. & Secrist, D. (1984). Inhibitors of prostaglandin synthesis or cathepsin B prevent muscle wasting due to sepsis in the rat. Journal of Clinical Investigation 73, 14831486.
  • Schollmeyer, J. E. (1986). Role of calcium and calcium-activated-protease in myoblast fusion. Experimental Cell Research 162, 411422.
  • Solomon, V., Baracos, V., Sarraf, P. & Goldberg, A. F. (1998b). Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway. Proceedings of the National Academy of Sciences of the USA 95, 1260212607.
  • Solomon, V. & Goldberg, A. L. (1996). Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. Journal of Biological Chemistry 271, 2669026697.
  • Solomon, V., Lecker, S. H. & Goldberg, A. L. (1998a). The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle. Journal of Biological Chemistry 273, 2521625222.
  • Sorimachi, H & Suzuki, K. (2001). The structure of calpain. Journal of Biochemistry 129, 653664.
  • Spencer, M. J., Croall, D. E. & Tidball, J. G. (1995). Calpains are activated in necrotic fibers from mdx dystrophic mice. Journal of Biological Chemistry 270, 1090910914.
  • Spencer, M. J., Guyon, J. R., Sorimachi, H., Potts, A., Richard, I., Herasse, M., Chamberlain, J., Dalkilic, I., Kunkel, L. M. & Beckmann, J. S. (2002). Stable expression of calpain 3 from a muscle transgene in vivo: immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation. Proceedings of the National Academy of Sciences of the USA 99, 88748879.
  • Spencer, M. J., Lu, B. & Tidball, J. G. (1997). Calpain II expression is increased by changes in mechanical loading of muscle in vivo. Journal of Cellular Biochemistry 64, 5566.
  • Suzuki, A., Kim, K. & Ikeuchi, Y. (1996). Proteolytic cleavage of connectin/titin. Advances in Biophysics 33, 5364.
  • Taillandier, D., Aurousseau, E., Meynial-Denis, D., Bechet, D., Ferrara, M., Cottins, P., Ducastaing, A., Bigard, X., Guezennec, C., Schmid, H. & Attaix, D. (1996). Coordinate activation of lysosomal, calcium activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochemical Journal 316, 6572.
  • Talmadge, R. J. (2000). Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle and Nerve 23, 661679.
  • Temm-Grove, C. J., Wert, D., Thompson, V. F., Allen, R. E. & Goll, D. E. (1999). Microinjection of calpastatin inhibits fusion in myoblasts. Experimental Cell Research 246, 293303.
  • Thomason, D. B. & Booth, F. W. (1990). Atrophy of the soleus muscle by hindlimb unweighting. Journal of Applied Physiology 68, 112.
  • Tischler, M. E., Rosenberg, S., Satarug, S., Henriksen, E. J., Kirby, C. R., Tome, M. & Chase, P. (1990). Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 39, 756763.
  • Voisin, L., Breuille, D., Combaret, L., Poutey, C., Taillandier, D., Aurousseau, E., Obled, C. & Attaix, D. (1996). Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, calcium-activated, and ubiquitin-proteasome proteolytic pathways. Journal of Clinical Investigation 97, 16101617.
  • Wehling, M., Spencer, M. J. & Tidball, J. G. (2001). A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. Journal of Cell Biology 155, 123131.
  • Widrick, J. J., Romatowski, J. G., Bain, J. L., Trappe, S. W., Thompson, J. L., Costill, D. L., Riley, D. A. & Fitts, R. H. (1997). Effect of 17 days of bed rest on peak isometric force and unloaded shortening velocity of human soleus fibers. American Journal of Physiology 273, C16901699.
  • Zeman, R. J., Kameyama, T., Matsumoto, K., Bernstein, P. & Etlinger, J. D. (1985). Regulation of protein degradation in muscle by calcium. Journal of Biological Chemistry 260, 1361913624.