SEARCH

SEARCH BY CITATION

REFERENCES

  • Bajic D, Koike M, Albsoul-Younes AM, Nakajima S & Nakajima Y (2002). Two different inward rectifier K+ channels are effectors for transmitter-induced slow excitation in brain neurons. Proc Natl Acad Sci U S A 99, 1449414499.
  • Bowery NG, (1993). GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33, 109147.
  • Boyd DF, Millar JA, Watkins CS & Mathie A (2000). The role of Ca2+ stores in the muscarinic inhibition of the K+ current IK(SO) in neonatal rat cerebellar granule cells. J Physiol 529, 321331.
  • Braun AP, Fedida D & Giles WR (1992). Activation of alpha 1-adrenoceptors modulates the inwardly rectifying potassium currents of mammalian atrial myocytes. Pflugers Arch 421, 431439.
  • Cho H, Nam GB, Lee SH, Earm YE & Ho WK (2001). Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in alpha(1)-adrenergic pathway via the modulation of acetylcholine-activated K(+) channels in mouse atrial myocytes. J Biol Chem 276, 159164.
  • Dascal N, Doupnik CA, Ivanina T, Bausch S, Wang W, Lin C, Garvey J, Chavkin C, Lester HA & Davidson N (1995). Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail. Proc Natl Acad Sci U S A 92, 67586762.
  • Doupnik CA, Dessauer CW, Slepak VZ, Gilman AG, Davidson N & Lester HA (1996). Time resolved kinetics of direct G beta 1 gamma 2 interactions with the carboxyl terminus of Kir3. 4 inward rectifier K+ channel subunits. Neuropharmacology 35, 923931.
  • Han J, Truell J, Gnatenco C & Kim D (2002). Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 542, 431444.
  • Hill JJ, & Peralta EG (2001). Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. J Biol Chem 276, 55055510.
  • Ho BY, Uezono Y, Takada S, Takase I & Izumi F (1999). Coupling of the expressed cannabinoid CB1 and CB2 receptors to phospholipase C and G protein-coupled inwardly rectifying K+ channels. Receptors Channels 6, 363374.
  • Ho IH, & Murrell-Lagnado RD (1999). Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J Biol Chem 274, 86398648.
  • Hong SG, Pleumsamran A & Kim D (1996). Regulation of atrial muscarinic K+ channel activity by a cytosolic protein via G protein-independent pathway. Am J Physiol 270, H526537.
  • Huang CL, Feng S & Hilgemann DW (1998). Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391, 803806.
  • Huang CL, Jan YN & Jan LY (1997). Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett 405, 291298.
  • Huang CL, Slesinger PA, Casey PJ, Jan YN & Jan LY (1995). Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15, 11331143.
  • Jelacic TM, Kennedy ME, Wickman K & Clapham DE (2000). Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J Biol Chem 275, 3621136216.
  • Jelacic TM, Sims SM & Clapham DE (1999). Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3. J Membr Biol 169, 123129.
  • Jung M, Calassi R, Rinaldi-Carmona M, Chardenot P, Le Fur G, Soubrie P & Oury-Donat F (1997). Characterization of CB1 receptors on rat neuronal cell cultures: binding and functional studies using the selective receptor antagonist SR 141716A. J Neurochem 68, 402409.
  • Karschin C, Dissmann E, Stuhmer W & Karschin A (1996). IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci 16, 35593570.
  • Kim D, (1991). Modulation of acetylcholine-activated K+ channel function in rat atrial cells by phosphorylation. J Physiol 437, 133155.
  • Kim D, & Bang H (1999). Modulation of rat atrial G protein-coupled K+ channel function by phospholipids. J Physiol 517, 5974.
  • Kim D, & Pleumsamran A (2000). Cytoplasmic unsaturated free fatty acids inhibit ATP-dependent gating of the G protein-gated K(+) channel. J Gen Physiol 115, 287304.
  • Kobrinsky E, Mirshahi T, Zhang H, Jin T & Logothetis DE (2000). Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat Cell Biol 2, 507514.
  • Kofuji P, Davidson N & Lester HA (1995). Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl Acad Sci U S A 92, 65426546.
  • Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA & Hatten ME (1996). Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron 16, 941952.
  • Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L & Clapham DE (1995a). The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature 374, 135141.
  • Krapivinsky G, Krapivinsky L, Wickman K & Clapham DE (1995b). G beta gamma binds directly to the G protein-gated K+ channel, IKACh. J Biol Chem 270, 2905929062.
  • Kurachi Y, (1995). G protein regulation of cardiac muscarinic potassium channel. Am J Physiol 269, C821830.
  • Leaney JL, Dekker LV & Tinker A (2001). Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca(2+)-independent protein kinase C. J Physiol 534, 367379.
  • Lei Q, Talley EM & Bayliss DA (2001). Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves G(alpha)q family subunits, phospholipase C, and a readily diffusible messenger. J Biol Chem 276, 1672016730.
  • Lesage F, Guillemare E, Fink M, Duprat F, Heurteaux C, Fosset M, Romey G, Barhanin J & Lazdunski M (1995). Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J Biol Chem 270, 2866028667.
  • McAllister SD, Griffin G, Satin LS & Abood ME (1999). Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a Xenopus oocyte expression system. J Pharmacol Exp Ther 291, 618626.
  • Medina I, Krapivinsky G, Arnold S, Kovoor P, Krapivinsky L & Clapham DE (2000). A switch mechanism for G beta gamma activation of I(KACh). J Biol Chem 275, 2970929716.
  • Meyer T, Wellner-Kienitz MC, Biewald A, Bender K, Eickel A & Pott L (2001). Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. J Biol Chem 276, 56505658.
  • Millar AJ, Barrat L, Southan AP, Page KM, Fyffe REW, Robertson B & Mathie A (2000). A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci U S A 97, 36143618.
  • Misgeld U, Bijak M & Jarolimek W (1995). A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46, 423462.
  • Mullner C, Vorobiov D, Bera AK, Uezono Y, Yakubovich D, Frohnwieser-Steinecker B, Dascal N & Schreibmayer W (2000). Heterologous facilitation of G protein-activated K(+) channels by β-adrenergic stimulation via cAMP-dependent protein kinase. J Gen Physiol 115, 547558.
  • Nemec J, Wickman K & Clapham DE (1999). Gbetagamma binding increases the open time of IKACh: kinetic evidence for multiple Gbetagamma binding sites. Biophys J 76, 246252.
  • Oh U, Ho YK & Kim D (1995). Modulation of the serotonin-activated K+ channel by G protein subunits and nucleotides in rat hippocampal neurons. J Membr Biol 147, 241253.
  • Pacheco MA, Ward SJ & Childers SR (1993). Identification of cannabinoid receptors in cultures of rat cerebellar granule cells. Brain Res 603, 102110.
  • Pleumsamran A, Wolak ML & Kim D (1998). Inhibition of ATP-induced increase in muscarinic K+ current by trypsin, alkaline pH, and anions. Am J Physiol 275, H751759.
  • Qin F, Auerbach A & Sachs F (1996). Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J 70, 264280.
  • Sakmann B, Noma A & Trautwein W (1983). Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303, 250253.
  • Slesinger PA, Stoffel M, Jan YN & Jan LY (1997). Defective gamma-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice. Proc Natl Acad Sci U S A 94, 1221012217.
  • Sodickson DL, & Bean BP (1996). GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J Neurosci 16, 63746385.
  • Soejima M, & Noma A (1984). Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch 400, 424431.
  • Stanfield PR, Nakajima S & Nakajima Y (2002). Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2. 0 and Kir3.0. Rev Physiol Biochem Pharmacol 145, 47179.
  • Stevens EB, Shah BS, Pinnock RD & Lee K (1999). Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. Mol Pharmacol 55, 10201027.
  • Sui JL, Chan KW & Logothetis DE (1996). Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J Gen Physiol 108, 381391.
  • Sui JL, Petit-Jacques J & Logothetis DE. (1998). Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci U S A 95, 13071312.
  • Surmeier DJ, Mermelstein PG & Goldowitz D (1996). The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. Proc Natl Acad Sci U S A 93, 1119111195.
  • Veerkamp JH, Peeters RA & Maatman RG (1991). Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta 1081, 124.
  • Velimirovic BM, Gordon EA, Lim NF, Navarro B & Clapham DE (1996). The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K+ channel. FEBS Lett 379, 3137.
  • Watkins CS, & Mathie A (1996). A non-inactivating K+ current sensitive to muscarinic receptor activation in rat cultured cerebellar granule neurons. J Physiol 491, 401412.
  • Wickman K, Karschin C, Karschin A, Picciotto MR & Clapham DE (2000). Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. J Neurosci 20, 56085615.
  • Zhang H, He C, Yan X, Mirshahi T & Logothetis DE (1999). Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1, 183188.