Voltage-Gated Na+ Channel Activation Induces Both Action Potentials in Utricular Hair Cells and Brain-Derived Neurotrophic Factor Release in the Rat Utricle During a Restricted Period of Development


  • C. Chabbert and I. Mechaly contributed equally to this study


The mammalian utricular sensory receptors are commonly believed to be non-spiking cells with electrical activity limited to graded membrane potential changes. Here we provide evidence that during the first post-natal week, the sensory hair cells of the rat utricle express a tetrodotoxin (TTX)-sensitive voltage-gated Na+ current that displays most of the biophysical and pharmacological characteristics of neuronal Na+ current. Single-cell RT-PCR reveals that several α-subunit isoforms of the Na+ channels are co-expressed within a single hair cell, with a major expression of Nav1.2 and Nav1.6 subunits. In neonatal hair cells, 30 % of the Na+ channels are available for activation at the resting potential. Depolarizing current injections in the range of the transduction currents are able to trigger TTX-sensitive action potentials. We also provide evidence of a TTX-sensitive activity-dependent brain-derived neurotrophic factor (BDNF) release by early post-natal utricle explants. Developmental analysis shows that Na+ currents decrease dramatically from post-natal day 0 (P0) to P8 and become almost undetectable at P21. Concomitantly, depolarizing stimuli fail to induce both action potential and BDNF release at P20. The present findings reveal that vestibular hair cells express neuronal-like TTX-sensitive Na+ channels able to generate Na+-driven action potentials only during the early post-natal period of development. During the same period an activity-dependent BDNF secretion by utricular explants has been demonstrated. This could be an important mechanism involved in vestibular sensory system differentiation and synaptogenesis.