SEARCH

SEARCH BY CITATION

REFERENCES

  • Art JJ & Fettiplace R (1987). Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385, 207242.
  • Beutner D & Moser T (2001). The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21, 45934599.
  • Blair NT & Bean BP (2002). Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22, 1027710290.
  • Blaustein MP & Goldman DE (1968). The action of certain polyvalent cations on the voltage-clamped lobster axon. J Gen Physiol 51, 279291.
  • Brehm P & Eckert R (1978). Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 12031206.
  • Crawford AC, Evans MG & Fettiplace R (1991). The actions of calcium on the mechanoelectrical transducer current of turtle hair cells. J Physiol 434, 369398.
  • Dallman JE, Davis AK & Moody WJ (1998). Spontaneous activity regulates calcium-dependent K+ current expression in developing ascidian muscle. J Physiol 511, 683693.
  • Djouhri L, Fang X, Okuse K, Wood JN, Berry CM & Lawson S (2003). The TTX-resistant sodium channel Nav1. 8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 546, 565576.
  • Echteler SM (1992). Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci U S A 89, 63246327.
  • Ehret G (1975). Masked auditory thresholds, critical ratios, and scales of the basilar membrane of the house mouse (Mus musculus). J Comp Physiol 103, 329341.
  • Evans MG & Fuchs PA (1987). Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells for the alligator cochlea. Biophys J 52, 649652.
  • Fuchs PA & Evans MG (1990). Potassium currents in hair cells isolated from the cochlea of the chick. J Physiol 429, 529551.
  • Fuchs PA & Sokolowski BH (1990). The acquisition during development of Ca-activated potassium currents by cochlear hair cells of the chick. Proc R Soc Lond B 241, 122126.
  • Goldin AL (2001). Resurgence of sodium channel research. Annu Rev Physiol 63, 87194.
  • Gummer AW & Mark RF (1994). Patterned neural activity in brain stem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii). Neuroreport 5, 685688.
  • Hille B (2001). Ionic Channels of Excitable Membranes, 3rd edn. Sinauer, Sunderland , MA .
  • Hodgkin AL & Huxley AF (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117, 500544.
  • Hudspeth AJ & Corey DP (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A 74, 24072411.
  • Johnson SL, Thomas MV & Kros CJ (2002). Membrane capacitance measurement using patch clamp with integrated self-balancing lock-in amplifier. Pflugers Arch 443, 653663.
  • Jones TA, Jones SM & Paggett KC (2001). Primordial rhythmic bursting in embryonic cochlear ganglion cells. J Neurosci 21, 81298135.
  • Kennedy HJ & Meech RW (2002). Fast Ca2+ signals at mouse inner hair cell synapse: a role for Ca2+-induced Ca2+ release. J Physiol 539, 1523.
  • Knipper M, Kopschall I, Rohbock K, Kopke AK, Bonk I, Zimmermann U & Zenner H (1997). Transient expression of NMDA receptors during rearrangement of AMPA-receptor-expressing fibers in the developing inner ear. Cell Tissue Res 287, 2341.
  • Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J & Striessnig J (2001). alpha 1D (Cav1. 3). subunits can form l-type Ca2+ channels activating at negative voltages. J Biol Chem 276, 2210022106.
  • Kotak VC & Sanes DH (1995). Synaptically evoked prolonged depolarizations in the developing auditory system. J Neurophysiol 74, 16111620.
  • Kros CJ (1996). Physiology of mammalian cochlear hair cells. In The Cochlea, ed. DallosP, PopperAN & FayRR, pp. 318385. Springer, New York .
  • Kros CJ, Ruppersberg JP & Rüsch A (1998). Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394, 281284.
  • Kros CJ, Rüsch A & Richardson GP (1992). Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc R Soc Lond B 249, 185193.
  • Kros CJ, Rüsch A, Richardson GP & Russell IJ (1993). Sodium and calcium currents in cultured cochlear hair cells of neonatal mice. J Physiol 473, 231P.
  • Lennan GW, Steinacker A, Lehouelleur J & Sans A (1999). Ionic currents and current-clamp depolarisations of type I and type II hair cells from the developing rat utricle. Pflugers Arch 438, 4046.
  • Lenzi D, Runyeon JW, Crum J, Ellisman MH & Roberts WM (1999). Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 19, 119132.
  • Lin X & Chen S (2000). Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro. Dev Brain Res 119, 297305.
  • Lippe WR (1994). Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14, 14861495.
  • Maffei L & Galli-Resta L (1990). Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci U S A 87, 28612864.
  • Marcotti W, Johnson SL, Holley MC & Kros CJ (2003). Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548, 383400.
  • Masetto S, Bosica M, Correia MJ, Ottersen OP, Zucca G, Perin P & Valli P (2003). Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. J Neurophysiol 90, 12661278.
  • Meister M, Wong RO, Baylor DA & Shatz CJ (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939943.
  • Mikaelian D & Ruben RJ (1965). Development of the hearing in the normal CBA-J mouse. Acta Otolaryngol 59, 451461.
  • Mo Z-L & Davis RL (1997). Endogenous firing patterns of murine spiral ganglion neurons. J Neurophysiol 77, 12941305.
  • Moody WJ (1998). Control of spontaneous activity during development. J Neurobiol 37, 97109.
  • Moser T & Beutner D (2000). Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci U S A 97, 883888.
  • Mostafapour SP, Cochran SL, Del Puerto NM & Rubel EW (2000). Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 426, 561571.
  • Ogata N & Tatebayashi H (1993). Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia. J Physiol 466, 937.
  • Oliver D, Plinkert P, Zenner HP & Ruppersberg JP (1997). Sodium current expression during postnatal development of rat outer hair cells. Pflugers Arch 434, 772778.
  • Parsons TD, Lenzi D, Almers W & Roberts WM (1994). Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13, 875883.
  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H & Striessnig J (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 8997.
  • Pujol R, Lavigne-Rebillard M & Lenoir M (1998). Development of sensory and neural structures in the mammalian cochlea. In Development of the Auditory System, ed. RubelEW, PopperAN & FayRR, pp. 146192. Springer, New York .
  • Ratto GM, Robinson DW, Yan B & McNaughton PA (1991). Development of the light response in neonatal mammalian rods. Nature 351, 654657.
  • Ricci AJ & Fettiplace R (1998). Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506, 159173.
  • Romand R (1983). Development of the cochlea. In Development of Auditory and Vestibular Systems, ed. RomandR, pp. 4788. Academic, New York .
  • Rübsamen R & Lippe WR (1998). The development of cochlear function. In Development of the Auditory System, ed. RubelEW, PopperAN & FayRR, pp. 193270. Springer, New York .
  • Rüsch A & Eatock RA (1997). Sodium currents in hair cells of the mouse utricle. In Diversity in Auditory Mechanics, ed. LewisER, LongGR, LyonRF, NarinsPM, SteeleCR & Hecht-PoinarE, pp. 549555. World Scientific, Singapore .
  • Ryugo DK (1992). The auditory nerve: peripheral innervation, cell body morphology, and central projections. In The Mammalian Auditory Pathway: Neuroanatomy, ed. WebsterDB, PopperAN & FayRR, pp. 2365. Springer, New York .
  • Sanes DH & Walsh EJ (1998). The development of central auditory processing. In Development of the Auditory System, ed. RubelEW, PopperAN & FayRR, pp. 271314. Springer, New York .
  • Sangameswaran L, Fish LM, Koch BD, Rabert DK, Delgado SG, Ilnicka M, Jakeman LB, Novakovic S, Wong K, Sze P, Tzoumaka E, Stewart GR, Herman RC, Chan H, Eglen RM & Hunter JC (1997). A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J Biol Chem 272, 148051489.
  • Saunders JC, Coles RB & Gates GR (1973). The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63, 5974.
  • Schnee ME & Ricci AJ (2003). Biophysical and pharmacological characterization of voltage-gated calcium currents in turtle auditory hair cells. J Physiol 549, 697717.
  • Shatz CJ & Stryker MP (1988). Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 8789.
  • Shnerson A, Devigne C & Pujol R (1982). Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Dev Brain Res 2, 7788.
  • Shnerson A & Pujol R (1982). Age-related changes in the C57BL/6J mouse cochlea. I. Physiological findings. Dev Brain Res 2, 6575.
  • Sobkowicz HM, Rose JE, Scott GL & Levenick CV (1986). Distribution of synaptic ribbons in the developing organ of Corti. J Neurocytol 15, 693714.
  • Sobkowicz HM, Rose JE, Scott GE & Slapnick SM (1982). Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J Neurosci 2, 942957.
  • Sokolowski BH, Stahl LM & Fuchs PA (1993). Morphological and physiological development of vestibular hair cells in the organ-cultured otocyst of the chick. Dev Biol 155, 134146.
  • Spitzer NC (2002). Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J Physiol Paris 96, 7380.
  • Sugihara I & Furukawa T (1989). Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62, 13301343.
  • Tierney TS, Russell FA & Moore DR (1997). Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 378, 295306.
  • Tucker TR & Fettiplace R (1996). Monitoring calcium in turtle hair cells with a calcium-activated potassium channel. J Physiol 494, 613626.
  • Von Gersdorff H, Sakaba T, Berglund K & Tachibana M (1998). Submillisecond kinetics of glutamate release from a sensory synapse. Neuron 21, 11771188.
  • Watt SD, Gu X, Smith RD & Spitzer NC (2000). Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons. Mol Cell Neurosci 16, 376387.
  • Witt CM, Hu HY, Brownell WE & Bertrand D (1994). Physiologically silent sodium channels in mammalian outer hair cells. J Neurophysiol 72, 10371040.
  • Wu SH & Oertel D (1987). Maturation of synapses and electrical properties of cells in the cochlear nuclei. Hear Res 30, 99110.
  • Zhang LI & Poo M (2001). Electrical activity and development of neural circuits. Nat Neurosci 4, 12071214.
  • Zidanic M & Fuchs PA (1995). Kinetic analysis of barium currents in chick cochlear hair cells. Biophys J 68, 13231336.