SEARCH

SEARCH BY CITATION

REFERENCES

  • Altun-Gultekin, ZF, Chandriani, S, Bougeret, C, Ishizaki, T, Narumiya, S, de Graaf, P, Bergen, HP, Hanafusa, H, Wagner, JA & Birge, RB (1998). Activation of Rho-dependent cell spreading and focal adhesion biogenesis by the v-Crk adaptor protein. Mol Cell Biol 18, 30443058.
  • An, SS, Laudadio, RE, Lai, J, Rogers, RA & Fredberg, JJ (2002). Stiffness changes in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 283, C792801.
  • Barany, M, Barron, JT, Gu, L & Barany, K (2001). Exchange of the actin-bound nucleotide in intact arterial smooth muscle. J Biol Chem 276, 4839848403.
  • Bellis, SL, Miller, JT & Turner, CE (1995). Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem 270, 1743717441.
  • Brown, MC, Curtis, MS & Turner, CE (1998). Paxillin LD motifs may define a new family of protein recognition domains. Nat Struct Biol 5, 677678.
  • Brown, MC, Perrotta, JA & Turner, CE (1996). Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 135, 11091123.
  • Burridge, K, & Chrzanowska-Wodnicka, M (1996). Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12, 463518.
  • Cipolla, MJ, & Osol, G (1998). Vascular smooth muscle actin cytoskeleton in cerebral artery forced dilatation. Stroke 29, 12231228.
  • Critchley, DR, Holt, MR, Barry, ST, Priddle, H, Hemmings, L & Norman, J (1999). Integrin-mediated cell adhesion: the cytoskeletal connection. Biochem Soc Symp 65, 7999.
  • Emala, CW, Liu, F & Hirshman, CA (1999). Gialpha but not gqalpha is linked to activation of p21(ras) in human airway smooth muscle cells. Am J Physiol 276, L564570.
  • Ezzell, RM, Goldmann, WH, Wang, N, Parasharama, N & Ingber, DE (1997). Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 231, 1426.
  • Fisher, TL, Terhorst, T, Cao, X & Wagner, RW (1993). Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res 21, 38573865.
  • Goldmann, WH, Galneder, R, Ludwig, M, Xu, W, Adamson, ED, Wang, N & Ezzell, RM (1998). Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Exp Cell Res 239, 235242.
  • Gunst, SJ, Tang, DD & Opazo Saez, AM (2003) Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung). Respir Physiol Neurobiol 137. 151168.
  • Hartwig, JH, (1992). Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 118, 14211442.
  • Jones, KA, Perkins, WJ, Lorenz, RR, Prakash, YS, Sieck, GC & Warner, DO (1999). F-actin stabilization increases tension cost during contraction of permeabilized airway smooth muscle in dogs. J Physiol 519, 527538.
  • Klemke, RL, Leng, J, Molander, R, Brooks, PC, Vuori, K & Cheresh, DA (1998). CAS/Crk coupling serves as a ‘molecular switch’ for induction of cell migration. J Cell Biol 140, 961972.
  • Li, X, & Earp, HS (1997). Paxillin is tyrosine-phosphorylated by and preferentially associates with the calcium-dependent tyrosine kinase in rat liver epithelial cells. J Biol Chem 272, 1434114348.
  • Mehta, D, & Gunst, SJ (1999). Actin polymerization stimulated by contractile activation regulates force development in canine tracheal smooth muscle. J Physiol 519, 829840.
  • Mehta, D, Wu, MF & Gunst, SJ (1996). Role of contractile protein activation in the length-dependent modulation of tracheal smooth muscle force. Am J Physiol 270, C243252.
  • Nakamura, K, Yano, H, Uchida, H, Hashimoto, S, Schaefer, E & Sabe, H (2000). Tyrosine phosphorylation of paxillin alpha is involved in temporospatial regulation of paxillin-containing focal adhesion formation and F-actin organization in motile cells. J Biol Chem 275, 2715527164.
  • Nakashima, N, Rose, DW, Xiao, S, Egawa, K, Martin, SS, Haruta, T, Saltiel, AR & Olefsky, JM (1999). The functional role of CrkII in actin cytoskeleton organization and mitogenesis. J Biol Chem 274, 30013008.
  • Opazo Saez, AM, Tang, DD & Gunst, SJ (2001). Role of paxillin in the regulation of cytoskeletal protein relocalization during contractile activation of smooth muscle (SM) cells. Mol Biol Cell 12, 301a.
  • Petit, V, Boyer, B, Lentz, D, Turner, CE, Thiery, JP & Valles, AM (2000). Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J Cell Biol 148, 957970.
  • Rao, KM, Betschart, JM & Virji, MA (1985). Hormone-induced actin polymerization in rat hepatoma cells and human leucocytes. Biochem J 230, 709714.
  • Ridley, AJ, (1999). Rho family proteins and regulation of the actin cytoskeleton. Prog Mol Subcell Biol 22, 122.
  • Schaller, MD, (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 64596472.
  • Schaller, MD, Hildebrand, JD & Parsons, JT (1999). Complex formation with focal adhesion kinase: A mechanism to regulate activity and subcellular localization of Src kinases. Mol Biol Cell 10, 34893505.
  • Smyth, AP, Rook, SL, Detmar, M & Robinson, GS (1997). Antisense oligonucleotides inhibit vascular endothelial growth factor/vascular permeability factor expression in normal human epidermal keratinocytes. J Invest Dermatol 108, 523526.
  • Tang, D, Mehta, D & Gunst, SJ (1999). Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am J Physiol 276, C250258.
  • Tang, DD, & Gunst, SJ (2001). Depletion of focal adhesion kinase by antisense depresses contractile activation of smooth muscle. Am J Physiol Cell Physiol 280, C874883.
  • Tang, DD, Wu, MF, Opazo Saez AM & Gunst SJ (2002). The focal adhesion protein paxillin regulates contraction in canine tracheal smooth muscle. J Physiol 542, 501513.
  • Thomas, JW, Cooley, MA, BroomE, JM, Salgia R, Griffin JD, Lombardo CR & Schalle MD (1999). The role of focal adhesion kinase binding in the regulation of tyrosine phosphorylation of paxillin. J Biol Chem 274, 3668436692.
  • Tumbarello, DA, Brown, MC & Turner, CE (2002). The paxillin LD motifs. FEBS Lett 513, 114118.
  • Turner, CE, (2000). Paxillin and focal adhesion signalling. Nat Cell Biol 2, E231236.
  • Turner, CE, Brown, MC, Perrotta, JA, Riedy, MC, Nikolopoulos, SN, McDonald, AR, Bagrodia, S, Thomas, S & Leventhal, PS (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J Cell Biol 145, 851863.
  • Wagner, RW, (1994). Gene inhibition using antisense oligodeoxynucleotides. Nature 372, 333335.
  • Wang, Z, Pavalko, FM & Gunst, SJ (1996). Tyrosine phosphorylation of the dense plaque protein paxillin is regulated during smooth muscle contraction. Am J Physiol 271, C15941602.
  • Yassin, R, Shefcyk, J, White, JR, Tao, W, Volpi, M, Molski, TF, Naccache, PH, Feinstein, MB & Sha'afi, RI (1985). Effects of chemotactic factors and other agents on the amounts of actin and a 65,000-mol-wt protein associated with the cytoskeleton of rabbit and human neutrophils. J Cell Biol 101, 182188.