Arterial Baroreflex Control of Muscle Blood Flow at the Onset of Voluntary Locomotion in Mice

Authors

  • Shizue Masuki,

    1. Department of Sports Medical Sciences, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto 390–8621, Japan
    Search for more papers by this author
  • Hiroshi Nose

    Corresponding author
    1. Department of Sports Medical Sciences, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto 390–8621, Japan
    • Corresponding author
      H. Nose: Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi Matsumoto 390–8621, Japan. Email: nosehir@sch.md.shinshu-u.ac.jp

    Search for more papers by this author

Abstract

To assess the role of arterial baroreflex control in muscle blood flow (MBF) and voluntary locomotion, mean arterial pressure (MAP), MBF, and electromyograms (EMGs) were measured in freely moving mice before (CNT) and after blocking the afferent or efferent pathway of arterial baroreflexes, carotid sinus denervation (CSD), or intraperitoneal administration of phentolamine (BLK), respectively. MAP was measured through a catheter placed in the femoral artery. MBF was measured with a needle-type laser-Doppler flowmeter and recorded through a low-pass filter with an edge frequency of 0.1 Hz. The frequency and duration of locomotion were judged from EMG recordings in the hindlimb. These probes were implanted at least 2 days before the measurements. Muscle vascular conductance (MVC = MBF/MAP) in all groups started to rise within 1 s after the onset of locomotion, but the increasing rate in CSD and BLK was significantly higher than in CNT for the first 9 s (P < 0.001). MAP in CSD and BLK significantly decreased below the baseline within 1 s and this was highly correlated with the increase in MVC for the first 9 s (R2= 0.842, P < 0.001), whereas MAP in CNT increased significantly 8 s after the onset of locomotion. Although the total period of movement in a free-moving state for 60 min was not significantly different between CNT and CSD (P > 0.1), the frequency of movement with a short duration of 0.1-0.4 min was higher in CSD than in CNT (P < 0.001), which was highly correlated with the reduction in MAP accompanying each period of movement (R2= 0.883, P < 0.01). These results suggest that arterial baroreflexes suppress vasodilatation in contracting muscle to maintain MAP at the onset of voluntary locomotion, and are necessary to continue a given duration of locomotion in mice.

Ancillary