SEARCH

SEARCH BY CITATION

References

  • Aronson D, Violan MA, Dusfresne SD, Zangen D, Fielding RA & Goodyear LJ (1997). Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J Clin Invest 99, 12511257.
  • Aronson D, Wojtaszewski JF, Thorell A, Nygren J, Zangen D, Richter EA, Ljungqvist O, Fielding RA & Goodyear LJ (1998). Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle. Am J Physiol 275, C555C561.
  • Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I & Farese RV (2001). Glucose activates protein kinase C zeta/lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J Biol Chem 276, 3553735545.
  • Bandyopadhyay G, Standaert ML, Sajan MP, Karnitz LM, Cong L, Quon MJ & Farese RV (1999). Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-{zeta}. Mol Endocrinol 13, 17661772.
  • Beeson M, Sajan MP, Dizon M, Grebenev D, Gomez-Daspet J, Miura A, Kanoh Y, Powe J, Bandyopadhyay G, Standaert ML & Farese RV (2003). Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4) 3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 52, 19261934.
  • Braiman L, Alt A, Kuroki T, Ohba M, Bak A, Tennenbaum T & Sampson SR (2001). Activation of protein kinase C zeta induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Mol Cell Biol 21, 78527861.
  • Chen HC, Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert M, Farese RV Jr & Farese RV (2002). Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem 277, 2355423562.
  • Cleland PJ, Abel K, Rattigan S & Clark M (1990). Long-term treatment of isolated rat soleus muscle with phorbol ester leads to loss of contraction-induced glucose transport. Biochem J 267, 659663.
  • Cleland PJ, Appleby G, Rattigan S & Clark M (1989). Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. J Biol Chem 264, 1770417711.
  • Farese RV (2002). Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol 283, E1E11.
  • Given MB, Jie O, Zhao X, Giles TD & Greenberg SS (1998). Protein kinase C isozymes in skeletal muscles during the early stage of genetic and streptozocin diabetes. Proc Soc Exp Biol Med., 218, 382389.
  • Goodyear LJ, Chang PY, Sherwood DJ, Dufresne SD & Moller DE (1996). Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am J Physiol 271, E403E408.
  • Goodyear LJ, Giorgino F, Balon TW, Condorelli G & Smith RJ (1995). Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol 268, E987E995.
  • Hardie DG (2004). AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc 36, 2834.
  • Ihlemann J, Galbo H & Ploug T (1999). Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle. Acta Physiol Scand 167, 6975.DOI: 10.1046/j.1365-201x.1999.00591.x
  • Kim YB, Kotani K, Ciaraldi TP, Henry RR & Kahn BB (2003). Insulin-stimulated protein kinase C{lambda}/{zeta} activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes 52, 19351942.
  • Kristiansen S, Nielsen JN, Bourgoin S, Klip A, Franco M & Richter EA (2001). GLUT-4 translocation in skeletal muscle studied with a cell-free assay: involvement of phospholipase D. Am J Physiol 281, E608E618.
  • Kristiansen S & Richter EA (2002). GLUT4-containing vesicles are released from membranes by phospholipase D cleavage of a GPI anchor. Am J Physiol 283, E374E382.
  • Milner-Brown H, Stein R & Yemm R (1973). The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol 230, 359370.
  • Nielsen JN, Frosig C, Sajan MP, Miura A, Standaert ML, Graham DA, Wojtaszewski JF, Farese RV & Richter EA (2003). Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochem Biophys Res Commun 312, 11471153.DOI: 10.1016/j.bbrc.2003.11.041
  • Pelech SL & Sanghera JS (1992). MAP kinases: charting the regulatory pathways. Science 257, 13551356.
  • Perrini S, Henriksson J, Zierath JR & Widegren U (2004). Exercise-induced protein kinase C isoform-specific activation in human skeletal muscle. Diabetes 53, 2124.
  • Richter EA (1996). Glucose utilization. In Handbook of Physiology, Section 12, Exercise: Regulation and Integration of Multiple Systems, ed. Rowell LB & Shepherd JT, pp. 912951. Oxford University Press, New York .
  • Richter EA, Cleland PJF, Rattigan S & Clark MG (1987). Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett 217, 232236.DOI: 10.1016/0014-5793(87)80669-5
  • Richter EA, Nielsen JN, Jorgensen SB, Frosig C & Wojtaszewski JF (2003). Signalling to glucose transport in skeletal muscle during exercise. Acta Physiol Scand 178, 329335.DOI: 10.1046/j.1365-201X.2003.01153.x
  • Saito N, Kikkawa U & Nishizuka Y (2002). The family of protein kinase C and membrane lipid mediators. J Diabetes Complications 16, 48.DOI: 10.1016/S1056-8727(01)00200-8
  • Sajan MP, Standaert ML, Bandyopadhyay G, Quon MJ, Burke TR Jr & Farese RV (1999). Protein kinase C-zeta and phosphoinositide-dependent protein kinase-1 are required for insulin-induced activation of ERK in rat adipocytes. J Biol Chem 274, 3049530500.DOI: 10.1074/jbc.274.43.30495
  • Sakamoto K & Goodyear LJ (2002). Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol 93, 369383.
  • Seger R & Krebs EG (1995). The MAPK signaling cascade. FASEB J 9, 726735.
  • Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A & Farese RV (1999). Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 274, 2530825316.DOI: 10.1074/jbc.274.36.25308
  • Standaert ML, Ortmeyer HK, Sajan MP, Kanoh Y, Bandyopadhyay G, Hansen BC & Farese RV (2002). Skeletal muscle insulin resistance in obesity-associated type 2 diabetes in monkeys is linked to a defect in insulin activation of protein kinase C-zeta/lambda/iota. Diabetes 51, 29362943.
  • Thompson HS, Maynard EB, Morales ER & Scordilis SP (2003). Exercise-induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol Scand 178, 6172.
  • Widegren U, Ryder JW & Zierath JR (2001). Mitogen-activated protein kinase signal transduction in skeletal muscle: effects of exercise and muscle contraction. Acta Physiol Scand 172, 227238.DOI: 10.1046/j.1365-201x.2001.00855.x
  • Widegren U, Wretman C, Lionikas A, Hedin G & Henriksson J (2000). Influence of exercise intensity on ERK/MAP kinase signalling in human skeletal muscle. Pflugers Arch 441, 317322.DOI: 10.1007/s004240000417
  • Williamson D, Gallagher P, Harber M, Hollon C & Trappe S (2003). Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 547, 977987.
  • Wojtaszewski JFP, Hansen BF, Ursø B & Richter EA (1996). Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol 81, 15011509.
  • Wojtaszewski JFP, Laustsen JL & Richter EA (1998). Contraction- and hypoxia-stimulated glucose transport in skeletal muscle is affected differently by wortmannin. Evidence for different signalling mechanisms. Biochim Biophys Acta 1340, 396404.
  • Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA & Kiens B (2000). Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528, 221226.DOI: 10.1111/j.1469-7793.2000.t01-1-00221.x
  • Wojtaszewski JF, Nielsen JN, Jorgensen SB, Frosig C, Birk JB & Richter EA (2003). Transgenic models – a scientific tool to understand exercise-induced metabolism: the regulatory role of AMPK (5′-AMP-activated protein kinase) in glucose transport and glycogen synthase activity in skeletal muscle. Biochem Soc Trans 31, 12901294.