SEARCH

SEARCH BY CITATION

References

  • Bandyopadhyay G, Kanoh Y, Sajan MP, Standaert ML & Farese RV (2000). Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-λ on insulin-stimulated glucose transport in L6 myotubes. Endocrinology 141, 41204127.
  • Bandyopadhyay G, Standaert ML, Galloway L, Moscat J & Farese RV (1997a). Evidence for involvement of protein kinase C (PKC)-ζ and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology 138, 47214731.
  • Bandyopadhyay G, Standaert ML, Zhao LYuB, Avignon A, Galloway L, Karnam P, Moscat J & Farese RV (1997b). Activation of protein kinase C (α, β, ζ) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-ζ in glucose transport. J Biol Chem 272, 25512558.DOI: 10.1074/jbc.272.4.2551
  • Beeson M, Sajan MP, Dizon M, Grebenev D, Gomez-Daspet J, Miura A, Kanoh Y, Powe J, Bandyopadhyay G, Standaert ML & Farese RV (2003). Activation of protein kinase C-ζ by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 52, 19261934.
  • Braiman L, Alt A, Kuroki T, Ohba M, Bak A, Tennenbaum T & Sampson SR (2001). Activation of protein kinase C ζ induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Mol Cell Biol 21, 78527861.
  • Braiman L, Sheffi-Friedman L, Bak A, Tennenbaum T & Sampson SR (1999). Tyrosine phosphorylation of specific protein kinase C isoenzymes participates in insulin stimulation of glucose transport in primary cultures of rat skeletal muscle. Diabetes 48, 19221929.
  • Chen HC, Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert M, Farese RV Jr & Farese RV (2002). Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem 277, 2355423562.
  • Cleland PJ, Abel KC, Rattigan S & Clark MG (1990). Long-term treatment of isolated rat soleus muscle with phorbol ester leads to loss of contraction-induced glucose transport. Biochem J 267, 659663.
  • Cleland PJ, Appleby GJ, Rattigan S & Clark MG (1989). Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport. J Biol Chem 264, 1770417711.
  • Cortright RN, Azevedo JL Jr, Zhou Q, Sinha M, Pories WJ, Itani SI & Dohm GL (2000). Protein kinase C modulates insulin action in human skeletal muscle. Am J Physiol Endocrinol Metab 278, E553E562.
  • Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA & Messing RO (2000). Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 279, L429L438.
  • Donsmark M, Langfort J, Holm C, Ploug T & Galbo H (2003). Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase. J Physiol 550, 845854.DOI: 10.1113/jphysiol.2003.042333
  • Farese RV (2002). Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 283, E1E11.
  • Goueli SA, Hsiao K & Goueli BS (2001). Assaying activity of individual protein kinases in crude tissue or cellular extracts. Methods Enzymol 333, 1627.
  • Heled Y, Shapiro Y, Shani Y, Moran DS, Langzam L, Braiman L, Sampson SR & Meyerovitch J (2003). Physical exercise enhances protein kinase C δ activity and insulin receptor tyrosine phosphorylation in diabetes-prone psammomys obesus. Metabolism 52, 10281033.DOI: 10.1016/S0026-0495(03)00154-9
  • Ihlemann J, Galbo H & Ploug T (1999). Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle. Acta Physiol Scand 167, 6975.DOI: 10.1046/j.1365-201x.1999.00591.x
  • Itani SI, Ruderman NB, Schmieder F & Boden G (2002). Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 51, 20052011.
  • Itani SI, Zhou Q, Pories WJ, MacDonald KG & Dohm GL (2000). Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes 49, 13531358.
  • Khayat ZA, Tsakiridis T, Ueyama A, Somwar R, Ebina Y & Klip A (1998). Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic Ca2+ and cPKC. Am J Physiol 275, C1487C1497.
  • Kobayashi E, Nakano H, Morimoto M & Tamaoki T (1989). Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 159, 548553.DOI: 10.1016/0006-291X(89)90028-4
  • Newton AC (1995). Protein kinase C: structure, function, and regulation. J Biol Chem 270, 2849528498.
  • Nielsen JN, Frosig C, Sajan MP, Miura A, Standaert ML, Graham DA, Wojtaszewski JF, Farese RV & Richter EA (2003). Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochem Biophys Res Commun 312, 11471153.DOI: 10.1016/j.bbrc.2003.11.041
  • Nishikawa K, Toker A, Johannes FJ, Songyang Z & Cantley LC (1997). Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 272, 952960.DOI: 10.1074/jbc.272.2.952
  • Oancea E & Meyer T (1998). Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307318.
  • Perrini S, Henriksson J, Zierath JR & Widegren U (2004). Exercise-induced protein kinase C isoform-specific activation in human skeletal muscle. Diabetes 53, 2124.
  • Richter EA, Cleland PJ, Rattigan S & Clark MG (1987). Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett 217, 232236.DOI: 10.1016/0014-5793(87)80669-5
  • Richter EA, Vistisen B, Maarbjerg SJ, Sajan M, Farese RV & Kiens B (2004). Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. J Physiol 560, 911920.
  • Rose AJ & Hargreaves M (2003). Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol 553, 303309.DOI: 10.1113/jphysiol.2003.054171
  • Sajan MP, Bandyopadhyay G, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I & Farese RV (2002). Sorbitol activates atypical protein kinase C and GLUT4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, the extracellular signal-regulated kinase pathway and phospholipase D. Biochem J 362, 665674.DOI: 10.1042/0264-6021:3620665
  • Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP & Farese RV (2001). Insulin and PIP3 activate PKC-ζ by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 40, 249255.
  • Sun JH & Zhu PH (1998). Effects of high potassium and caffeine exposure on activities of Ca2+-dependent and Ca2+-independent protein kinase C in frog skeletal muscle. Cell Signal 10, 569574.DOI: 10.1016/S0898-6568(97)00193-9
  • Turinsky J, Bayly BP & O'Sullivan DM (1990). 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin. J Biol Chem 265, 79337938.
  • Wojtaszewski JF, Hansen BF, Kiens B & Richter EA (1997). Insulin signaling in human skeletal muscle: time course and effect of exercise. Diabetes 46, 17751781.
  • Wojtaszewski JF, Laustsen JL, Derave W & Richter EA (1998). Hypoxia and contractions do not utilize the same signaling mechanism in stimulating skeletal muscle glucose transport. Biochim Biophys Acta 1380, 396404.