SEARCH

SEARCH BY CITATION

References

  • Alstermark B, Lundberg A, Pinter M & Sasaki S (1987). Long C3–C5 propriospinal neurones in the cat. Brain Res 404, 382388.
  • Antonino-Green DM, Cheng J & Magnuson DS (2002). Neurons labeled from locomotor-related ventrolateral funiculus stimulus sites in the neonatal rat spinal cord. J Comp Neurol 442, 226238.
  • Atsuta Y, Abraham P, Iwahara T, Garcia-Rill E & Skinner RD (1991). Control of locomotion in vitro. II. Chemical stimulation. Somatosens Mot Res 8, 5563.
  • Atsuta Y, Garcia-Rill E & Skinner RD (1988). Electrically induced locomotion in the in vitro brainstem-spinal cord preparation. Dev Brain Res 42, 309312.
  • Ballion B, Morin D & Viala D (2001). Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur J Neurosci 14, 17271738.
  • Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O & Schwab ME (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7, 269277.
  • Barilari MG & Kuypers HGJM (1969). Propriospinal fibers interconnecting the spinal enlargements in the cat. Brain Res 14, 321330.
  • Batschelet E (1981). Circular Statistics in Biology. Academic Press, Toronto .
  • Beato M, Bracci E & Nistri A (1997). Contribution of NMDA and non-NMDA glutamate receptors to locomotor pattern generation in the neonatal rat spinal cord. Proc R Soc Lond B Biol Sci 264, 877884.
  • Berkowitz A & Stein PS (1994). Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses. J Neurosci 14, 51055119.
  • Bernath S (1992). Calcium-independent release of amino acid neurotransmitters: fact or artifact? Prog Neurobiol 38, 5791.
  • Bowker RM & Abbott LC (1990). Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent: evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurons, but not from the nucleus raphe magnus. Brain Res 512, 1525.
  • Cazalets JR, Sqalli-Houssaini Y & Clarac F (1992). Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol 455, 187204.
  • Cohen AH & Wallen P (1980). The neuronal correlate of locomotion in fish. ‘Fictive Swimming’ induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 41, 1118.
  • Conta AC & Stelzner DJ (2004). Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury. J Comp Neurol 479, 347359.
  • Cowley KC & Schmidt BJ (1994a). Some limitations of ventral root recordings for monitoring locomotion in the in vitro neonatal rat spinal cord preparation. Neurosci Lett 171, 142146.
  • Cowley KC & Schmidt BJ (1994b). A comparison of motor patterns induced by N-methyl-D-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci Lett 171, 147150.
  • Cowley KC & Schmidt BJ (1995). Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J Neurophysiol 74, 11091117.
  • Cowley KC & Schmidt BJ (1997). Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. J Neurophysiol 77, 247259.
  • Cowley KC, Zaporozhets E, MacLean JN & Schmidt BJ (2005). Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord? J Neurophysiol 94, 38053814.
  • Czeh G & Somjen GG (1989). Changes in extracellular calcium and magnesium and synaptic transmission in isolated mouse spinal cord. Brain Res 486, 274285.
  • Deliagina TG, Orlovskii GN & Pavlova GA (1983). The capacity for generation of rhythmic oscillations is distributed in the lumbosacral spinal cord of the cat. Exp Brain Res 53, 8190.
  • Dietz V, Nakazawa K, Wirz M & Erni T (1999). Level of spinal cord lesion determines locomotor activity in spinal man. Exp Brain Res 128, 405409.
  • English AW (1989). Interlimb coordination during locomotion. Am Zool 29, 255266.
  • Grillner S (1974). On the generation of locomotion in the spinal dogfish. Exp Brain Res 20, 459470.
  • Ho S & O'Donovan MJ (1993). Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo. J Neurosci 13, 13541371.
  • Huisman AM, Ververs B, Cavada C & Kuypers HG (1984). Collateralization of brainstem pathways in the spinal ventral horn in rat as demonstrated with the retrograde fluorescent double-labeling technique. Brain Res 300, 362367.
  • Iwahara T, Atsuta Y, Garcia-Rill E & Skinner RD (1991). Locomotion induced by spinal cord stimulation in the neonate rat in vitro. Somatosens Mot Res 8, 281287.
  • Jordan LM & Schmidt BJ (2002). Propriospinal neurons involved in the control of locomotion: potential targets for repair strategies? Prog Brain Res 137, 125139.
  • Juvin L, Simmers J & Morin D (2005). Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25, 60256035.
  • Kahn JA & Roberts A (1982). The central nervous origin of the swimming motor pattern in embryos of Xenopus laevis. J Exp Biol 99, 185196.
  • Katz B & Miledi R (1963). A study of spontaneous miniature potentials in spinal motoneurones. J Physiol 168, 389422.
  • Katz B & Miledi R (1970). Further study of the role of calcium in synaptic transmission. J Physiol 207, 789801.
  • Kazennikov OV & Shik ML (1988). Propagation of activity along the ‘stepping strip’ of the cat spinal cord. Neirofiziologiya 20, 763769.
  • Kazennikov OV, Shik ML & Yakovlev GV (1983). Stepping movements induced in cats by stimulation of the dorsolateral funiculus of the spinal cord. Bull Exp Biol Med 96, 10361039.
  • Kiehn O & Kjaerulff O (1996). Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J Neurophysiol 75, 14721482.
  • Kjaerulff O & Kiehn O (1996). Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci 16, 57775794.
  • Kremer E & Lev-Tov A (1997). Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J Neurophysiol 77, 11551170.
  • Kudo N & Yamada T (1987). N-methyl-D,L-aspartate-induced locomotor activity in a spinal cord-hindlimb muscles preparation of the newborn rat studied in vitro. Neurosci Lett 75, 4348.
  • Kuno M & Takahashi T (1986). Effects of calcium and magnesium on transmitter release at Ia synapses of rat spinal motoneurones in vitro. J Physiol 376, 543553.
  • Kuwana S, Okada Y & Natsui T (1998). Effects of extracellular calcium and magnesium on central respiratory control in the brainstem-spinal cord of neonatal rat. Brain Res 786, 194204.
  • Lev-Tov A & Pinco M (1992). In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord. J Physiol 447, 149169.
  • Li Y & Burke RE (2001). Short-term synaptic depression in the neonatal mouse spinal cord: effects of calcium and temperature. J Neurophysiol 85, 20472062.
  • Liu J & Jordan LM (2005). Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J Neurophysiol 94, 13921404.
  • McClellan AD (1994). Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: In vitro preparations. J Neurophysiol 72, 847860.
  • Magnuson DSK & Trinder TC (1997). Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro. J Neurophysiol 77, 200206.
  • Matsushita M, Ikeda M & Hosoya Y (1979). The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique. J Comp Neurol 184, 6380.
  • Miller KE, Douglas VD, Richards AB, Chandler MJ & Foreman RD (1998). Propriospinal neurons in the C1–C2 spinal segments project to the L5–S1 segments of the rat spinal cord. Brain Res Bull 47, 4347.
  • Miller S, Reitsma DJ & Van Der Meche FGA (1973). Functional organization of long ascending propriospinal pathways linking lumbo-sacral and cervical segments in the cat. Brain Res 62, 169188.
  • Miller S, Van Der Burg J & Van Der Meche FGA (1975). Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res 91, 217237.
  • Mortin LI & Stein PSG (1989). Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle. J Neurosci 9, 22852296.
  • Noga BR, Kriellaars DJ, Brownstone RM & Jordan LM (2003). Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol 90, 14641478.
  • Noga BR, Kriellaars DJ & Jordan LM (1991). The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions. J Neurosci 11, 16911700.
  • Piccolino M, Pignatelli A & Rakotobe LA (1998). Calcium-independent release of neurotransmitter in the retina: a ‘copernican’ viewpoint change. Prog Retin Eye Res 18, 138.
  • Rossignol S, Chau C, Brustein E, Belanger M, Barbeau H & Drew T (1996). Locomotor capacities after complete and partial lesions of the spinal cord. Acta Neurobiol Exp 56, 449463.
  • Rouse DT Jr & McClellan AD (1997). Descending propriospinal neurons in normal and spinal cord-transected lamprey. Exp Neurol 146, 113124.
  • Schmidt BJ, Zaporozhets E & Jordan LM (2003). Bulbospinal pathways activating locomotor-like activity in the in vitro neonatal rat spinal cord: chemical versus electrical stimulation of the brainstem. Abstr Soc Neurosci 29, 277.212.
  • Sherriff FE & Henderson Z (1994). A cholinergic propriospinal innervation of the rat spinal cord. Brain Res 634, 150154.
  • Shik ML (1983). Action of the brainstem locomotor region on spinal stepping generators via propriospinal pathways. In Spinal Cord Reconstruction, ed. KaoCC, BungeRP & ReierPJ, pp. 421434. Raven Press, New York .
  • Sholomenko GN & Delaney KR (1998). Restitution of functional neural connections in chick embryos assessed in vitro after spinal cord transection in Ovo. Exp Neurol 154, 430451.
  • Skagerberg G & Bjorklund A (1985). Topographic principles in the spinal projections of serotonergic and non-serotonergic brainstem neurons in the rat. Neuroscience 15, 445480.
  • Skinner RD, Coulter JD, Adams RJ & Remmel RS (1979). Cells of origin of long descending propriospinal fibers connecting the spinal enlargements in cat and monkey determined by horseradish peroxidase and electrophysiological techniques. J Comp Neurol 188, 443454.
  • Smith JC & Feldman JL (1987). In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21, 321333.
  • Smith JC, Feldman JL & Schmidt BJ (1988). Neural mechanisms generating locomotion studied in mammalian brainstem-spinal cord in vitro. FASEB J 2, 22832288.
  • Steeves JD & Jordan LM (1980). Localization of a descending pathway in the spinal cord which is necessary for controlled treadmill locomotion. Neurosci Lett 20, 283288.
  • Steeves JD & Jordan LM (1984). Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res 307, 263276.
  • Stelzner DJ & Cullen JM (1991). Do propriospinal projections contribute to hindlimb recovery when all long tracts are cut in neonatal or weanling rats? Exp Neurol 114, 193205.
  • Tresch MC & Kiehn O (2000). Motor coordination without action potentials in the mammalian spinal cord. Nat Neurosci 3, 593599.
  • Yamaguchi T (1986). Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats. Brain Res 379, 125136.
  • Yezierski RP, Culberson JL & Brown PB (1980). Cells of origin of propriospinal connections to cat lumbosacral gray as determined with horseradish peroxidase. Exp Neurol 69, 493512.
  • Zaporozhets E, Cowley KC & Schmidt BJ (2004). A reliable technique for the induction of locomotor-like activity in the in vitro neonatal rat spinal cord using brainstem electrical stimulation. J Neurosci Methods 139, 3341.
  • Zaporozhets E & Schmidt BJ (2001). Propriospinal connections mediate bulbospinal activation of locomotor-like activity in the in vitro neonatal rat spinal cord. Abstr Soc Neurosci 27, 297.211.
  • Zar JH (1974). Biostatistical Analysis. Prentice Hall, New Jersey .