SEARCH

SEARCH BY CITATION

References

  • Arata A, Onimaru H & Homma I (1990). Respiration-related neurons in the ventral medulla of newborn rats in vitro. Brain Res Bull 24, 599604.
  • Ballanyi K, Onimaru H & Homma I (1999). Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 59, 583634.
  • Bayliss DA, Talley EM, Sirois JE & Lei Q (2001). TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respir Physiol 129, 159174.
  • Chen Z, Okada Y & Eldridge FL (1997). Hypercapnia-induced c-fos expression in cholinergic cells within the marginal glial layer of the rat ventral medulla oblongata. FASEB J 11, A131.
  • Coates EL, Li A & Nattie EE (1993). Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol 75, 514.
  • Dean JB, Bayliss DA, Erickson JT, Lawing WL & Millhorn DE (1990). Depolarisation and stimulation of neurons in the nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36, 207216.
  • Dean JB, Lawing WL & Millhorn DE (1989). CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp Brain Res 76, 656661.
  • Errchidi S, Monteau R & Hilaire G (1991). Noradrenergic modulation of the medullary respiratory rhythm generator in the newborn rat: an in vitro study. J Physiol 443, 477498.
  • Feldman JL, Mitchell GS & Nattie EE (2003). Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26, 239266.
  • Goldstein SA, Bockenhauer D, O'Kelly I & Zilberberg N (2001). Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2, 175184.
  • Gourine AV, Llaudet E, Dale N & Spyer KM (2005). ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436, 108111.
  • Harada Y, Kuno M & Wang YZ (1985). Differential effects of carbon dioxide and pH on central chemoreceptors in the rat in vitro. J Physiol 368, 679693.
  • Issa FG & Remmers JE (1992). Identification of a subsurface area in the ventral medulla sensitive to local changes in PCO2. J Appl Physiol 72, 439446.
  • Kawai A, Ballantyne D, Mückenhoff K & Scheid P (1996). Chemosensitive medullary neurones in the brainstem-spinal cord preparation of the neonatal rat. J Physiol 492, 277292.
  • Kawai A, Onimaru H, Arata A & Homma I (1997). A role of preinspiratory neuron of the central chemo-sensitivity of respiration in the brainstem-spinal cord preparation. Jpn J Physiol 47, S96.
  • Li A & Nattie E (2002). CO2 dialysis in one chemoreceptor site, the RTN: stimulus intensity and sensitivity in the awake rat. Respir Physiol Neurobiol 133, 1122.
  • Li A, Randall M & Nattie EE (1999). CO2 microdialysis in the retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. J Appl Physiol 87, 910919.
  • Loeschcke HH (1982). Central chemosensitivity and the reaction theory. J Physiol 332, 124.
  • Loeschcke HH, De Lattre J, Schlaefke ME & Trouth CO (1970). Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir Physiol 10, 184197.
  • Mellen NM, Janczewski WA, Bocchiaro CM & Feldman JL (2003). Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37, 821826.
  • Mitchell RA, Loeschcke HH, Massion WH & Severinghaus JW (1963). Respiratory responses mediated through superficial chemosensitive areas on the medulla. J Appl Physiol 18, 523533.
  • Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA & Guyenet PG (2004). Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7, 13601369.
  • Nattie E (1999). CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59, 299331.
  • Nattie E (2000). Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness. Respir Physiol 122, 223235.
  • Nattie EE (2001). Central chemosensitivity, sleep, and wakefulness. Respir Physiol 129, 257268.
  • Nattie EE & Li A (2002). CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. J Appl Physiol 92, 21192130.
  • Okada Y, Chen Z, Jiang W, Kuwana S & Eldridge FL (2002). Anatomical arrangement of hypercapnia-activated cells in the superficial ventral medulla of rats. J Appl Physiol 93, 427439.
  • Okada Y, Mückenhoff K, Holtermann G, Acker H & Scheid P (1993a). Depth profiles of pH and PO2 in the isolated brainstem-spinal cord of the neonatal rat. Respir Physiol 93, 315326.
  • Okada Y, Mückenhoff K & Scheid P (1993b). Hypercapnia and medullary neurons in the isolated brainstem-spinal cord of the rat. Respir Physiol 93, 327336.
  • Onimaru H, Arata A & Homma I (1987). Localization of respiratory rhythm-generating neurons in the medulla of brainstem-spinal cord preparations from newborn rats. Neurosci Lett 78, 151155.
  • Onimaru H, Arata A & Homma I (1989). Firing properties of respiratory rhythm generating neurons in the absence of synaptic transmission in rat medulla in vitro. Exp Brain Res 76, 530536.
  • Onimaru H, Arata A & Homma I (1995). Intrinsic burst generation of preinspiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats. Exp Brain Res 106, 5768.
  • Onimaru H, Ballanyi K & Homma I (2003). Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro. J Physiol 552, 727741.
  • Onimaru H & Homma I (1992). Whole cell recordings from respiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats. Pflugers Arch 420, 399406.
  • Onimaru H & Homma I (2003). A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23, 14781486.
  • Onimaru H, Shamoto A & Homma I (1998). Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat. Pflugers Arch 435, 485494.
  • Oyamada Y, Ballantyne D, Mückenhoff K & Scheid P (1998). Respiration-modulated membrane potential and chemosensivity of locus coeruleus neurons in the in vitro brainstem-spinal cord of the neonatal rat. J Physiol 513, 381398.
  • Patel AJ & Honore E (2001). Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24, 339346.
  • Richerson GB (2004). Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5, 449461.
  • Schlaefke ME, See WR & Loeschcke HH (1970). Ventilatory response to alterations of H+ ion concentration in small areas of the ventral medullary surface. Respir Physiol 10, 198212.
  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW & Feldman JL (1991). Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726729.
  • Smith JC, Greer JJ, Liu GS & Feldman JL (1990). Neural mechanisms generating respiratory pattern in mammalian brainstem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity. J Neurophysiol 64, 11491169.
  • Suzue T (1984). Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 354, 173183.
  • Takeda R & Haji A (1991). Synaptic response of bulbar respiratory neurons to hypercapnic stimulation in peripherally chemodenervated cats. Brain Res 561, 307317.
  • Takeda S, Eriksson LI, Yamamoto Y, Joensen H, Onimaru H & Lindahl SG (2001). Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats. Anesthesiology 95, 740749.
  • Talley EM, Lei Q, Sirois JE & Bayliss DA (2000). TASK-1, a two-pore-domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25, 399410.
  • Voipio J & Ballanyi K (1997). Interstitial PCO2 and pH, and their role as chemostimulants in the isolated respiratory network of neonatal rats. J Physiol 499, 527542.
  • Wang W, Bradley SR & Richerson GB (2002). Quantification of the response of rat medullary raphe neurones to independent changes in pHo and PCO2. J Physiol 540, 951970.
  • Xu H, Cui N, Yang Z, Qu Z & Jiang C (2000). Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis. J Physiol 524, 725735.