SEARCH

SEARCH BY CITATION

References

  • Anderle P, Nielsen CU, Pinsonneault J, Krog PL, Brodin B & Sadee W (2006). Genetic Variants of the human dipeptide transporter PEPT1. J Pharmacol Exp Ther 316, 636646.
  • Boll M, Markovich D, Weber WM, Korte H, Daniel H & Murer H (1994). Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, β-lactam antibiotics and ACE-inhibitors. Pflugers Arch 429, 146149.
  • Boorer KJ, Loo DDF & Wright EM (1994). Steady-state and presteady-state kinetics of the H+–hexose cotransporter (STP1) from Arabidopsis thaliana expressed in Xenopus oocytes. J Biol Chem 269, 2041720424.
  • Bretschneider B, Brandsch M & Neubert R (1999). Intestinal transport of β-lactam antibiotics: analysis of the affinity at the H+–peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 16, 5561.
  • Daniel H (2004). Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66, 361384.
  • Daniel H & Kottra G (2004). The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447, 610618.
  • Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM & Koepsell H (2003). A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A 100, 1175311758.
  • Doring F, Walter J, Will J, Focking M, Boll M, Amasheh S, Clauss W & Daniel H (1998). Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest 101, 27612767.
  • Eskandari S, Loo DDF, Dai G, Levy O, Wright EM & Carrasco N (1997). Thyroid Na+–I symporter. Mechanism, stoichiometry and specificity. J Biol Chem 272, 2723027238.
  • Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF & Hediger MA (1994). Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563566.
  • Forster IC, Loo DDF & Eskandari S (1999). Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+–Pi cotransporters. Am J Physiol 276, F644F649.
  • Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V & Leibach FH (1995). Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 270, 2567225677.
  • Ganapathy ME, Huang W, Wang H, Ganapathy V & Leibach FH (1998). Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun 246, 470475.
  • Ganapathy ME, Prasad PD, Mackenzie B, Ganapathy V & Leibach FH (1997). Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT 1 and PEPT 2. Biochim Biophys Acta 1324, 296308.
  • Hediger MA, Ikeda T, Coady M, Gundersen CB & Wright EM (1987). Expression of size-selected mRNA encoding the intestinal Na+–glucose cotransporter in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 84, 26342637.
  • Hu M, Subramanian P, Mosberg HI & Amidon GL (1989). Use of the peptide carrier system to improve the intestinal absorption of 1-α-methyldopa: carrier kinetics, intestinal permeabilities, and in vitro hydrolysis of dipeptidyl derivatives of 1-α-methyldopa. Pharm Res 6, 6670.
  • Inui K, Tomita Y, Katsura T, Okano T, Takano M & Hori R (1992). H+-coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. J Pharmacol Exp Ther 260, 482486.
  • Irie M, Terada T, Katsura T, Matsuoka S & Inui K (2005). Computational modelling of H+-coupled peptide transport via human PEPT1. J Physiol 565, 429439.
  • Kottra G & Daniel H (2001). Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry. J Physiol 536, 495503.
  • Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V & Leibach FH (1995). Human intestinal H+–peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 270, 64566463.
  • Loo DDF, Eskandari S, Boorer KJ, Sarkar HK & Wright EM (2000). Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J Biol Chem 275, 3741437422.
  • Loo DDF, Hazama A, Supplisson S, Turk E & Wright EM (1993). Relaxation kinetics of the Na+–glucose cotransporter. Proc Natl Acad Sci U S A 90, 57675771.
  • Loo DDF, Hirayama BA, Gallardo EM, Lam JT, Turk E & Wright EM (1998). Conformational changes couple Na+ and glucose transport. Proc Natl Acad Sci U S A 95, 77897794.
  • Mackenzie B, Loo DDF, Fei Y, Liu WJ, Ganapathy V, Leibach FH & Wright EM (1996a). Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J Biol Chem 271, 54305437.
  • Mackenzie B, Loo DDF, Panayotova-Heiermann M & Wright EM (1996b). Biophysical characteristics of the pig kidney Na+–glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J Biol Chem 271, 3267832683.
  • Mackenzie B, Loo DDF & Wright EM (1998). Relationships between Na+–glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol 162, 101106.
  • Parent L, Supplisson S, Loo DDF & Wright EM (1992a). Electrogenic properties of the cloned Na+–glucose cotransporter. I. Voltage-clamp studies. J Membr Biol 125, 4962.
  • Parent L, Supplisson S, Loo DDF & Wright EM (1992b). Electrogenic properties of the cloned Na+–glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol 125, 6379.
  • Rubio-Aliaga I & Daniel H (2002). Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol Sci 23, 434440.
  • Sadée W (1999). Pharmacogenomics. BMJ 319, 12861289.
  • Soragna A, Bossi E, Giovannardi S, Pisani R & Peres A (2005). Relations between substrate affinities and charge equilibration rates in the rat GABA cotransporter GAT1. J Physiol 562, 333345.
  • Temple CS & Boyd CA (1998). Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter. Biochim Biophys Acta 1373, 277281.
  • Terada T, Saito H, Mukai M & Inui K (1997). Recognition of β-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am J Physiol 273, F706F711.
  • Terada T, Sawada K, Irie M, Saito H, Hashimoto Y & Inui K (2000). Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2. Pflugers Arch 440, 679684.
  • Wang H, Fei YJ, Ganapathy V & Leibach FH (1998). Electrophysiological characteristics of the proton-coupled peptide transporter PEPT2 cloned from rat brain. Am J Physiol 275, C967C975.
  • Wenzel U, Gebert I, Weintraut H, Weber WM, Clauss W & Daniel H (1996). Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells. J Pharmacol Exp Ther 277, 831839.
  • Yamashita A, Singh SK, Kawate T, Jin Y & Gouaux E (2005). Crystal structure of a bacterial homologue of Na+–Cl-dependent neurotransmitter transporters. Nature 437, 215223.
  • Zhang EY, Fu DJ, Pak YA, Stewart T, Mukhopadhyay N, Wrighton SA & Hillgren KM (2004). Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J Pharmacol Exp Ther 310, 437445.
  • Zhu T, Chen XZ, Steel A, Hediger MA & Smith DE (2000). Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharm Res 17, 526532.