SEARCH

SEARCH BY CITATION

References

  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA & Wakil SJ (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 26132616.
  • Andreelli F, Foretz M, Knauf C, Cani PD, Perrin C, Iglesias MA, Pillot B, Bado A, Tronche F, Mithieux G, Vaulont S, Burcelin R & Viollet B (2006). Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not by insulin. Endocrinology 147, 2432-2441.
  • Assifi MM, Suchankova G, Constant S, Prentki M, Saha AK & Ruderman NB (2005). AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am J Physiol Endocrinol Metab 289, E794E800.
  • Bajaj M, Suraamornkul S, Pratipanawatr T, Hardies LJ, Pratipanawatr W, Glass L, Cersosimo E, Miyazaki Y & DeFronzo RA (2003). Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 52, 13641370.
  • Barthel A, Schmoll D, Kruger KD, Roth RA & Joost HG (2002). Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase. Endocrinology 143, 31833186.
  • Berg AH, Du Combs TPX, Brownlee M & Scherer PE (2001). The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7, 947953.
  • Bergeron R, Previs SF, Cline GW, Perret P, Russell RR 3rd, Young LH & Shulman GI (2001). Effect of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 50, 10761082.
  • Birnbaum MJ (2005). Activating AMP-activated protein kinase without AMP. Mol Cell 19, 289290.
  • Browne GJ, Finn SG & Proud CG (2004). Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem 279, 1222012231.
  • Cheng SW, Fryer LG, Carling D & Shepherd PR (2004). Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279, 1571915722.
  • Cheung PC, Salt IP, Davies SP, Hardie DG & Carling D (2000). Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochem J 346, 659669.
  • Clarke PR & Hardie DG (1990). Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 9, 24392446.
  • Corton JM, Gillespie JG, Hawley SA & Hardie DG (1995). 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229, 558565.
    Direct Link:
  • Dentin R, Benhamed F, Pegorier JP, Foufelle F, Viollet B, Vaulont S, Girard J & Postic C (2005). Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 115, 28432854.
  • Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR & Morris AD (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 13041305.
  • Ferre P, Azzout-Marniche D & Foufelle F (2003). AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans 31, 220223.
  • Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S & Viollet B (2005). Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54, 13311339.
  • Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B & Hue L (2006). 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55, 865874.
  • Hardie DG (2004). The AMP-activated protein kinase pathway – new players upstream and downstream. J Cell Sci 117, 54795487.
  • Hong YH, Varanasi US, Yang W & Leff T (2003). AMP-activated protein kinase regulates HNF4α transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem 278, 2749527501.
  • Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C & Rider M (2002). Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12, 14191423.
  • Inoki K, Zhu T & Guan KL (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577590.
  • Kawaguchi T, Osatomi K, Yamashita H, Kabashima T & Uyeda K (2002). Mechanism for fatty acid ‘sparing’ effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 277, 38293835.
  • Kodama S, Koike C, Negishi M & Yamamoto Y (2004). Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 24, 79317940.
  • Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H & Montminy M (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 11091111.
  • Krause U, Bertrand L & Hue L (2002a). Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem 269, 37513759.
  • Krause U, Bertrand L, Maisin L, Rosa M & Hue L (2002b). Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur J Biochem 269, 37423750.
  • Leclerc I, Lenzner C, Gourdon L, Vaulont S, Kahn A & Viollet B (2001). Hepatocyte nuclear factor-4α involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. Diabetes 50, 15151521.
  • Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G & Diehl AM (2000). Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 6, 9981003.
  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB & Simon MC (2006). Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21, 521531.
  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG & Alessi DR (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23, 833843.
  • Luo Z, Saha AK, Xiang X & Ruderman NB (2005). AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26, 6976.
  • Munday MR, Campbell DG, Carling D & Hardie DG (1988). Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem 175, 331338.
  • Muoio DM, Seefeld K, Witters LA & Coleman RA (1999). AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J 338, 783791.
  • Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB, Chen H, Rossetti L & Scherer PE (2006). Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem 281, 26542660.
  • Pencek RR, Shearer J, Camacho RC, James FD, Lacy DB, Fueger PT, Donahue EP, Snead W & Wasserman DH (2005). 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes 54, 355360.
  • Peralta C, Bartrons R, Riera L, Manzano A, Xaus C, Gelpi E & Rosello-Catafau J (2000). Hepatic preconditioning preserves energy metabolism during sustained ischemia. Am J Physiol Gastrointest Liver Physiol 279, G163G171.
  • Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N, Xaus C, Cutillas B, Gelpi E & Rosello-Catafau J (2001). Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology 34, 11641173.
  • Proud CG (2004). Role of mTOR signalling in the control of translation initiation and elongation by nutrients. Curr Top Microbiol Immunol 279, 215244.
  • Rao RD, Buckner JC & Sarkaria JN (2004). Mammalian target of rapamycin (mTOR) inhibitors as anti-cancer agents. Curr Cancer Drug Targets 4, 621635.
  • Reiter AK, Bolster DR, Crozier SJ, Kimball SR & Jefferson LS (2005). Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab 288, E980E988.
  • Rencurel F, Stenhouse A, Hawley SA, Friedberg T, Hardie DG, Sutherland C & Wolf CR (2005). AMP-activated protein kinase mediates phenobarbital induction of CYP2B gene expression in hepatocytes and a newly derived human hepatoma cell line. J Biol Chem 280, 43674373.
  • Saha AK, Avilucea PR, Ye JM, Assifi MM, Kraegen EW & Ruderman NB (2004). Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun 314, 580585.
  • Salt I, Celler JW, Hawley SA, Prescott A, Woods A, Carling D & Hardie DG (1998). AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem J 334, 177187.
  • Sarbassov DD, Ali SM & Sabatini DM (2005). Growing roles for the mTOR pathway. Curr Opin Cell Biol 17, 596603.
  • Satoh H, Nguyen MT, Miles PD, Imamura T, Usui I & Olefsky JM (2004). Adenovirus-mediated chronic ‘hyper-resistinemia’ leads to in vivo insulin resistance in normal rats. J Clin Invest 114, 224231.
  • Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H, Okamoto M & Montminy M (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 6174.
  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M & Cantley LC (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 16421646.
  • Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R & Vaulont S (2003). The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111, 9198.
  • Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, Clayton RD, Conley LM, Yoon S & Zhou B (1997). Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 82, 219225.
  • Witters LA & Kemp BE (1992). Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5′-AMP-activated protein kinase. J Biol Chem 267, 28642867.
  • Xu A, Wang Y, Keshaw H, Xu LY, Lam KS & Cooper GJ (2003). The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112, 91100.
  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB & Kadowaki T (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8, 12881295.
  • You M, Matsumoto M, Pacold CM, Cho WK & Crabb DW (2004). The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 17981808.
  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ & Moller DE (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 11671174.