SEARCH

SEARCH BY CITATION

References

  • Anderson KA, Means RL, Huang QH, Kemp BE, Goldstein EG, Selbert MA, Edelman AM, Fremeau RT & Means AR (1998). Components of a calmodulin-dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase β. J Biol Chem 273, 3188031889.
  • Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D & Small CJ (2004). AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279, 1200512008.
  • Antcliff JF, Haider S, Proks P, Sansom MS & Ashcroft FM (2005). Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 24, 229239.
  • Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, Fryer LG, Foufelle F, Carling D, Hardie DG & Baldwin SA (2002). Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 115, 24332442.
  • Bateman A (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22, 1213.
  • Beg ZH, Allmann DW & Gibson DM (1973). Modulation of 3-hydroxy-3-methylglutaryl coenzyme: a reductase activity with cAMP and with protein fractions of rat liver cytosol. Biochem Biophys Res Comm 54, 13621369.
  • Brown MS, Brunschede GY & Goldstein JL (1975). Inactivation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in vitro. An adenine nucleotide-dependent reaction catalyzed by a factor in human fibroblasts. J Biol Chem 250, 25022509.
  • Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W & Furnsinn C (2004). Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53, 10521059.
  • Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR & Hallows KR (2005). Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells. J Biol Chem 280, 1760817616.
  • Carling D & Hardie DG (1989). The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta 1012, 8186.
  • Carling D, Zammit VA & Hardie DG (1987). A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223, 217222.
  • Carlson CA & Kim KH (1973). Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 248, 378380.
  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR & Hawley JA (2006). Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20, 190192.
  • Corton JM, Gillespie JG, Hawley SA & Hardie DG (1995). 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229, 558565.
    Direct Link:
  • Crute BE, Seefeld K, Gamble J, Kemp BE & Witters LA (1998). Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 273, 3534735354.
  • Davies SP, Hawley SA, Woods A, Carling D, Haystead TAJ & Hardie DG (1994). Purification of the AMP-activated protein kinase on ATP-γ-Sepharose and analysis of its subunit structure. Eur J Biochem 223, 351357.
  • Durante PE, Mustard KJ, Park SH, Winder WW & Hardie DG (2002). Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol 283, E178E186.
  • El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M & Leverve X (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275, 223228.
  • Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P, Kinnear NP & Hardie DG (2005). Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280, 4150441511.
  • Ferrer A, Caelles C, Massot N & Hegardt FG (1985). Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochem Biophys Res Comm 132, 497504.
  • Fryer LG, Parbu-Patel A & Carling D (2002). The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct pathways. J Biol Chem 277, 2522625232.
  • Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, Cruz-Correa M & Offerhaus JA (2000). Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology 119, 14471453.
  • Gonzalez C, Almaraz L, Obeso A & Rigual R (1994). Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74, 829898.
  • Hallows KR, Kobinger GP, Wilson JM, Witters LA & Foskett JK (2003a). Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am J Physiol Cell Physiol 284, C1297C1308.
  • Hallows KR, McCane JE, Kemp BE, Witters LA & Foskett JK (2003b). Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells. J Biol Chem 278, 9981004.
  • Hallows KR, Raghuram V, Kemp BE, Witters LA & Foskett JK (2000). Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. J Clin Invest 105, 17111721.
  • Hardie DG & Sakamoto K (2006). AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21, 4860.
  • Hardie DG, Salt IP, Hawley SA & Davies SP (1999). AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem J 338, 717722.
  • Hardie DG, Scott JW, Pan DA & Hudson ER (2003). Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546, 113120.
  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR & Hardie DG (2003). Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2, 28.
  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D & Hardie DG (1996). Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J Biol Chem 271, 2787927887.
  • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG & Hardie DG (2005). Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2, 919.
  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, De La Chapelle A & Aaltonen LA (1998). A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391, 184187.
  • Henin N, Vincent MF, Gruber HE & Van den Berghe G (1995). Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J 9, 541546.
  • Holmes BF, Kurth-Kraczek EJ & Winder WW (1999). Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87, 19901995.
  • Hong SP, Leiper FC, Woods A, Carling D & Carlson M (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100, 88398843.
  • Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C & Rider M (2002). Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Current Biol 12, 14191423.
  • Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA, Baba O, Terashima T & Hardie DG (2003). A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biol 13, 861866.
  • Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR & Witters LA (2005). The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280, 2906029066.
  • Imamura K, Ogura T, Kishimoto A, Kaminishi M & Esumi H (2001). Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 287, 562567.
  • Ingebritsen TS, Lee H, Parker RA & Gibson DM (1978). Reversible modulation of the activities of both liver microsomal hydroxymethylglutaryl coenzyme A reductase and its inactivating enzyme. Evidence for regulation by phosphorylation-dephosphorylation. Biochem Biophys Res Comm 81, 12681277.
  • Inoki K, Zhu T & Guan KL (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577590.
  • Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W & Zimmer M (1998). Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18, 3843.
  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ & Thompson CB (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18, 283293.
  • Jorgensen SB, Nielsen JN, Birk JB, Olsen GS, Viollet B, Andreelli F, Schjerling P, Vaulont S, Hardie DG, Hansen BF, Richter EA & Wojtaszewski JF (2004). The α2–5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53, 30743081.
  • Kang L, Dunn-Meynell AA, Routh VH, Gaspers LD, Nagata Y, Nishimura T, Eiki J, Zhang BB & Levin BE (2006). Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes 55, 412420.
  • Kemp BE (2004). Bateman domains and adenosine derivatives form a binding contract. J Clin Invest 113, 182184.
  • Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H & Montminy M (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 11091011.
  • Kudo N, Barr AJ, Barr RL, Desai S & Lopaschuk GD (1995). High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270, 1751317520.
  • Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ & Winder WW (1999). 5′-AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48, 16671671.
  • Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG & Alessi DR (2004). LKB1 is a master kinase that activates 13 protein kinases of the AMPK subfamily, including the MARK/PAR-1 kinases. EMBO J 23, 833843.
  • Lochhead PA, Salt IP, Walker KS, Hardie DG & Sutherland C (2000). 5-Aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 49, 896903.
  • Lopez-Barneo J, Pardal R & Ortega-Saenz P (2001). Cellular mechanism of oxygen sensing. Annu Rev Physiol 63, 259287.
  • Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D & Hue L (2000). Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biol 10, 12471255.
  • Marsin AS, Bouzin C, Bertrand L & Hue L (2002). The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 277, 3077830783.
  • Merrill GM, Kurth E, Hardie DG & Winder WW (1997). AICAR decreases malonyl-CoA and increases fatty acid oxidation in skeletal muscle of the rat. Am J Physiol 273, E1107E1112.
  • Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ & Kahn BB (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569574.
  • Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D & Kahn BB (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339343.
  • Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA & Kemp BE (1994). Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 269, 23612364.
  • Mu J, Brozinick JT, Valladares O, Bucan M & Birnbaum MJ (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose ransport in skeletal muscle. Mol Cell 7, 10851094.
  • Munday MR, Campbell DG, Carling D & Hardie DG (1988). Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem 175, 331338.
  • Nielsen JN, Mustard KJ, Graham DAYuH, MacDonald CS, Pilegaard H, Goodyear LJ, Hardie DG, Richter EA & Wojtaszewski JF (2003). 5′-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol 94, 631641.
  • Owen MR, Doran E & Halestrap AP (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348, 607614.
  • Polekhina G, Gupta A, Michell BJ, Van Denderen B, Murthy S, Feil SC, Jennings IG, Campbell DJ, Witters LA, Parker MW, Kemp BE & Stapleton D (2003). AMPK β-subunit targets metabolic stress-sensing to glycogen. Current Biol 13, 867871.
  • Polekhina G, Gupta A, Van Denderen BJ, Feil SC, Kemp BE, Stapleton D & Parker MW (2005). Structural basis for glycogen recognition by AMP-activated protein kinase. Structure (Camb) 13, 14531462.
  • Sakamoto K, Goransson O, Hardie DG & Alessi DR (2004). Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287, E310E317.
  • Sakamoto K, McCarthy A, Smith D, Green KA, Hardie DG, Ashworth A & Alessi DR (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24, 18101820.
  • Sakamoto K, Zarrinpashneh E, Budas GR, Pouleur AC, Dutta A, Prescott AR, Ashworth A, Jovanovic A, Alessi DR & Bertrand L (2006). Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. Am J Physiol 290, E780E788.
  • Salt IP, Johnson G, Ashcroft SJH & Hardie DG (1998). AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem J 335, 533539.
  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM, Westra WH, Herman JG & Sidransky D (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62, 36593662.
  • Schmidt MC & McCartney RR (2000). β-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J 19, 49364943.
  • Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG & Hardie DG (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113, 274284.
  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA & Cantley LC (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 33293335.
  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M & Cantley LC (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 16421646.
  • Da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK & Rutter GA (2003). Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371, 761774.
  • Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC & Hardie DG (2003). Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol 13, 12991305.
  • Thelander M, Olsson T & Ronne H (2004). Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J 23, 19001910.
  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang CcC, Itani SI, Lodish HF & Ruderman NB (2002). Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 99, 1630916313.
  • Wilson WA, Hawley SA & Hardie DG (1996). The mechanism of glucose repression/derepression in yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Current Biol 6, 14261434.
  • Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M & Holloszy JO (2000). Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88, 22192226.
  • Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M & Carling D (2005). Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2, 2133.
  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M & Carling D (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13, 20042008.
  • Woods A, Munday MR, Scott J, Yang X, Carlson M & Carling D (1994). Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269, 1950919515.
  • Woollhead AM, Scott JW, Hardie DG & Baines DL (2005). Phenformin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) activation of AMP-activated protein kinase inhibits transepithelial Na+ transport across H441 lung cells. J Physiol 566, 781792.
  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB & Kadowaki T (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 6, 12881295.
  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ & Moller DE (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 11671174.
  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ & Shulman GI (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99, 1598315987.