SEARCH

SEARCH BY CITATION

References

  • Abe H (2000). Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Moscow) 65, 757765.
  • Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ & Wackerhage H (2005). Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19, 786788.
  • Bell GJ & Wenger HA (1988). The effect of one-legged sprint training on intramuscular pH and nonbicarbonate buffering capacity. Eur J Appl Physiol 58, 158164.
  • Burgomaster KA, Heigenhauser GJF & Gibala MJ (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time trial performance. J Appl Physiol 100, 20412047.
  • Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN & Gibala MJ (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98, 19851990.
  • Carter SL, Rennie CD, Hamilton SJ & Tarnopolsky M (2001). Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol 79, 386392.
  • Chesley A, Heigenhauser GJ & Spriet LL (1996). Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Physiol Endocrinol Metab 270, E328E235.
  • Clark SA, Chen ZP, Murphy KT, Aughey RJ, McKenna MJ, Kemp BE & Hawley JA (2004). Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 286, E737E743.
  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR & Hawley JA (2006). Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20, 190192.
  • Coyle EF (1995). Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev 23, 2563.
  • Coyle EF (2005). Very intense exercise-training is extremely potent and time efficient: a reminder. J Appl Physiol 98, 19831984.
  • Coyle EF, Coggan AR, Hopper MK & Walters TJ (1988). Determinants of endurance in well-trained cyclists. J Appl Physiol 64, 26222630.
  • Dudley GA, Abraham WM & Terjung RL (1982). Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol 53, 844850.
  • Eddy DO, Sparks KL & Adelizi DA (1977). The effects of continuous and interval training in women and men. Eur J Appl Physiol Occup Physiol 37, 8392.
  • Edge J, Bishop D & Goodman C (2006). The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol 96, 97105.
  • Fournier M, Ricci J, Taylor AW, Ferguson RJ, Montpetit RR & Chaitman BR (1982). Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc 14, 453456.
  • Gleeson M (2000). Biochemistry of Exercise. In The Encyclopedia of Sports Medicine, VII, Nutrition in Sport, ed. Maughan RJ, pp. 1738. Blackwell Science, Oxford , UK .
  • Gollnick PD, Armstrong RB, Saltin B, Saubert CW 4th, Sembrowich WL & Shepherd RE (1973). Effect of training on enzyme activity and fibre composition of human skeletal muscle. J Appl Physiol 34, 107111.
  • Gorostiaga EM, Walter CB, Foster C & Hickson RC (1991). Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol Occup Physiol 63, 101107.
  • Green HJ, Ball-Burnett M, Symon S, Grant S & Jamieson G (1995). Short-term training, muscle glycogen, and cycle endurance. Can J Appl Physiol 20, 315324.
  • Green H, Grant S, Bombardier E & Ranney D (1999). Initial aerobic power does not alter muscle metabolic adaptations to short-term training. Am J Physiol Endocrinol Metab 277, E39E48.
  • Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S & Farrance B (1992). Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J Appl Physiol 72, 484491.
  • Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM, Carey MF & Enger DM (2000). Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 89, 17931803.
  • Hawley JA (2002). Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29, 218222.
  • Hawley JA, Tipton KD & Millard-Stafford ML (2006). Promoting training adaptations through nutritional interventions. J Sports Sci 24, 113.
  • Henriksson J & Reitman JS (1976). Quantitative measures of enzyme activities in type I and type II muscle fibres of man after training. Acta Physiol Scand 97, 392397.
  • Hildebrandt AL, Pilegaard H & Neufer PD (2003). Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration. Am J Physiol Endocrinol Metab 285, E1021E1027.
  • Holloszy JO & Coyle EF (1984). Adaptations of skeletal muscle to endurance training and their metabolic consequences. J Appl Physiol 70, 20322038.
  • Hood DA (2001). Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90, 11371157.
  • Hunter GR, Weinsier RL, Bamman MM & Larson DE (1998). A role for high intensity exercise on energy balance and weight control. Int J Obes Relat Metab Disord 22, 489493.
  • Knutti D & Kralli A (2001). PGC-1, a versatile coactivator. Trends Endocrinol Metab 12, 360365.
  • Koulmann N & Bigard AX (2006). Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 452, 125139.
  • Kubukeli ZN, Noakes TD & Dennis SD (2002). Training techniques to improve endurance exercise performances. Sports Med 32, 489509.
  • Lee JS, Bruce CR, Spurrell BE & Hawley JA (2002). Effect of training on activation of extracellular signal-related kinase 1/2 and p38 mitogen-activated protein kinase pathways in rat skeletal muscle. Clin Exp Pharmacol Physiol 29, 655660.
  • Livak KJ & Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402408.
  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.
  • Mahoney DJ, Carey K, Fu MH, Snow R, Cameron-Smith D, Parise G & Tarnopolsky MA (2004). Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 18, 226231.
  • Mahoney DJ, Parise G, Melov S, Safdar A & Tarnopolsky MA (2005). Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19, 14981500.
  • Mahoney DJ & Tarnopolsky MA (2005). Understanding skeletal muscle adaptation to exercise training in humans: contributions from microarray studies. Phys Med Rehabil Clin N Am 16, 859873.
  • Mannion AF, Jakeman PM & Willan PL (1993). Determination of human skeletal muscle buffer value by homogenate technique: methods of measurement. J Appl Physiol 75, 14121418.
  • Marlin DJ & Harris RC (1991). Titrimetric determination of muscle buffering capacity (Bm titr) in biopsy samples. Equine Vet J 23, 193197.
  • Nader GA & Esser KA (2001). Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90, 19361342.
  • Nevill ME, Boobis LH, Brooks S & Williams C (1989). Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 67, 23762382.
  • Passoneau JV & Lowry OH (1993). Enzymatic Analysis: a Practical Guide. Humana Press, Totowa , NJ , USA .
  • Pilegaard H, Saltin B & Neufer PD (2003). Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546, 851858.
  • Putman CT, Jones NL, Hultman E, Hollidge-Horvat MG, Bonen A, McConachie DR & Heigenhauser GJ (1998). Effects of short-term submaximal training in humans on muscle metabolism in exercise. Am J Physiol Endocrinol Metab 275, E132E139.
  • Raha S, Myint T, Johnstone L & Robinson BH (2002). Control of oxygen free radical formation from mitochondrial complex I: Roles for protein kinase A and pyruvate dehydrogenase kinase. Free Rad Biol Med 32, 421430.
  • Rognmo O, Hetland E, Helgerud J, Hoff J & Slordahl SA (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 11, 216222.
  • Russell AP, Hesselink MK, Lo SK & Schrauwen P (2005). Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 19, 986988.
  • Saltin B & Gollnick PD (1983). Skeletal muscle adaptability. Significance for metabolism and performance. In Handbook of Physiology, Skeletal Muscle, ed. Peachey LD, pp. 555631. American Physiological Society, Bethesda , MD , USA .
  • Saltin B, Nazar K, Costill DL, Stein E, Jansson E, Essen B & Gollnick D (1976). The nature of the training response; peripheral and central adaptations of one-legged exercise. Acta Physiol Scand 96, 289305.
  • Schmitt B, Fluck M, Decombaz J, Kreis R, Boesch C, Wittwer M, Graber F, Vogt M, Howald H & Hoppeler H (2003). Transcriptional adaptations of lipid metabolism in tibialis anterior muscle of endurance-trained athletes. Physiol Genomics 15, 148157.
  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM & Nair KS (2003). Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 18881896.
  • Spina RJ, Chi MM, Hopkins MG, Nemeth PM, Lowry OH & Holloszy JO (1996). Mitochondrial enzymes increase in muscle in response to 7–10 days of cycle exercise. J Appl Physiol 80, 22502254.
  • Starritt EC, Angus D & Hargreaves M (1999). Effect of short-term training on mitochondrial ATP production rate in human skeletal muscle. J Appl Physiol 86, 450454.
  • Terada S, Kawanaka K, Goto M, Shimokawa T & Tabata I (2005). Effects of high-intensity intermittent swimming on PGC-1α protein expression in rat skeletal muscle. Acta Physiol Scand 184, 5965.
  • Terada S, Yokozeki T, Kawanaka K, Ogawa K, Higuchi M, Ezaki O & Tabata I (2001). Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol 90, 20192024.
  • Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, Rachman J, Peyrard-Janvid M, Wahlestedt C & Sundberg CJ (2005). Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 19, 750760.
  • Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M & Cameron-Smith D (2002). Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283, E66E72.
  • Vogiatzis I, Terzis G, Nanas S, Stratakos G, Simoes DC, Georgiadou O, Zakynthinos S & Roussos C (2005). Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest 128, 38383845.
  • Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD & Hawley JA (1997). Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol 75, 713.
  • Youngren JF, Keen S, Kulp JL, Tanner CJ, Houmard JA & Goldfine ID (2001). Enhanced muscle insulin receptor autophosphorylation with short-term aerobic exercise training. Am J Physiol Endocrinol Metab 280, E528E533.