SEARCH

SEARCH BY CITATION

References

  • Anderson KA, Means RL, Huang QH, Kemp BE, Goldstein EG, Selbert MA, Edelman AM, Fremeau RT & Means AR (1998). Components of a calmodulin-dependent protein kinase cascade. J Biol Chem 273, 3188031889.
  • Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D & Small CJ (2004). AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279, 1200512008.
  • Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y et al. (2004). Regulation of fasted blood glucose by resistin. Science 303, 11951198.
  • Bolster DR, Crozier SJ, Kimball SR & Jefferson LS (2002). AMPK-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277, 2397723980.
  • Cha SH, Hu Z, Chohnan S & Lane MD (2005). Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. Proc Natl Acad Sci U S A 102, 1455714562.
  • Chen G, Koyama K, Yuan X, Lee Y, Zhou YT, O'Doherty R, Newgard CB & Unger RH (1996). Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci U S A 93, 1479514799.
  • Cheng SWY, Fryer LGD, Carling D & Shepherd PR (2004). Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279, 1571915722.
  • Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M et al. (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112, 423431.
  • Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC & Seeley RJ (2006). Hypothalamic mTOR signaling regulates food intake. Science 312, 927930.
  • Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE & Weigle DS (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 17141717.
  • Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MA, Dellinger EP & Purnell JQ (2002). Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346, 16231630.
  • Deldicque L, Theisen D & Francaux M (2005). Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 94, 110.
  • El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C & Flier JS (2000). Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 105, 18271832.
  • Han S-M, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H et al. (2005). Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48, 21702178.
  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR & Hardie DG (2003). Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2, 28.
  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D & Hardie DG (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271, 2787927887.
  • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli GB & Hardie DG (2005). Calmodulin-dependent protein kinase kinase β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2, 919.
  • He W, Lam TK, Obici S & Rossetti L (2006). Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci 9, 227233.
  • Hong SP, Leiper FC, Woods A, Carling D & Carlson M (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100, 88398843.
  • Hong SP, Momcilovic M & Carlson M (2005). Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase α as Snf1-activating kinases in yeast. J Biol Chem 280, 2180421809.
  • Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR & Witters LA (2005). The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280, 2906029066.
  • Hutchinson DS, Chernogubova E, Dallner OS, Cannon B & Bengtsson T (2005). β-Adrenoceptors, but not α-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1. Diabetologia 48, 23862395.
  • Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H & Saito M (2005). Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54, 13851391.
  • Jamshidi N & Taylor DA (2001). Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 134, 11511154.
  • Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W & Zimmer M (1998). Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18, 3843.
  • Joyeux M, Arnaud C, Godin-Ribuot D, Demenge P, Lamontagne D & Ribuot C (2002). Endocannabinoids are implicated in the infarct size-reducing effect conferred by heat stress preconditioning in isolated rat hearts. Cardiovasc Res 55, 619625.
  • Kahn BB, Alquier T, Carling D & Hardie DG (2005). AMPK-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1, 1525.
  • Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J, Kuhajda FP, Moran TH & Ronnett GV (2004). C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 279, 1997019976.
  • Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS et al. (2004). Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10, 727733.
  • Kimball SR, Siegfried BA & Jefferson LS (2004). Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 279, 5410354109.
  • Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K-I, Hara K et al. (2003). A possible linkage between AMPK-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. Genes Cells 9, 6579.
  • Kishi K, Yuasa T, Minami A, Yamada M, Hagi A, Hayashi H, Kemp BE, Witters LA & Ebina Y (2000). AMPK-activated protein kinase is activated by the stimulations of Gq-coupled receptors. Biochem Biophys Res Commun 276, 1622.
  • Kokoeva MW, Yin H & Flier JS (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310, 679683.
  • Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE et al. (2005). Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280, 2519625201.
  • Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S et al. (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 11091114.
  • Lee Y, Naseem RH, Duplomb L, Park BH, Garry DJ, Richardson JA, Schaffer JE & Unger RH (2004). Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc Natl Acad Sci U S A 101, 1362413629.
  • Liu Y, Wan Q, Guan Q, Gao L & Zhao J (2006). High-fat diet feeding impairs both the expression and activity of AMPKα in rats' skeletal muscle. Biochem Biophys Res Commun 339, 701707.
  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. (2004). LKB1 is a master kinase that activates 13 protein kinases of the AMPK subfamily, including the MARK/PAR-1 kinases. EMBO J 23, 833843.
  • McCrimmon RJ, Fan X, Ding Y, Zhu W, Jacob RJ & Sherwin RS (2004). Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 19531958.
  • Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F & Kahn BB (2006). Diet-induced obesity alters AMP-kinase activity in hypothalamus and skeletal muscle. J Biol Chem; 281 DOI: DOI: 10.1074/jbc.M512831200.
  • Matejkova O, Mustard KJ, Sponarova J, Flachs P, Rossmeisl M, Miksik I, Thomason-Hughes M, Hardie DG & Kopecky J (2004). Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 569, 245248.
  • Minokoshi Y, Alquier T, Furukawa N, Kim Y-B, Lee A, Xue B et al. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569574.
  • Minokoshi Y, Kim YB, Peroni OD, Fryer LGD, Muller C, Carling D & Kahn BB (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339343.
  • Moule SK & Denton RM (1998). The activation of p38 MAPK by the β-adrenergic agonist isoproterenol in rat epididymal fat cells. FEBS Lett 439, 287290.
  • Murata M, Okimura Y, Iida K, Matsumoto M, Sowa H, Kaji H, Kojima M, Kangawa K & Chihara K (2002). Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J Biol Chem 277, 56675674.
  • Muse ED, Obici S, Bhanot S, Monia BP, McKay RA, Rajala MW, Scherer PE & Rossetti L (2004). Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest 114, 232239.
  • Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K & Matsukura S (2001). A role for ghrelin in the central regulation of feeding. Nature 409, 194198.
  • Obici S, Feng Z, Arduini A, Conti R & Rossetti L (2003). Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 9, 756761.
  • Ogawa Y, Masuzaki H, Hosoda K, Aizawa-Abe M, Suga J, Suda M et al. (1999). Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes 48, 18221829.
  • Orci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R & Unger RH (2004). Rapid transformation of white adipocytes into fat-oxidizing machines. Proc Natl Acad Sci U S A 101, 20582063.
  • Palanivel R & Sweeney G (2005). Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin. FEBS Lett 579, 50495054.
  • Puigserver P, Wu Z, Park CW, Graves R, Wright M & Spiegelman BM (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829839.
  • Reiter AK, Bolster DR, Crozier SJ, Kimball SR & Jefferson LS (2005). Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab 288, E980E988.
  • Russell RR III, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ & Young LH (2004). AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114, 495503.
  • Sakagami H, Umemiya M, Saito S & Kondo H (2000). Distinct immunohistochemical localization of two isoforms of Ca2+/calmodulin-dependent protein kinase kinases in the adult rat brain. Eur J Neurosci 12, 8999.
  • Sakamoto K, Goransson O, Hardie DG & Alessi DR (2004). Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287, E310R317.
  • Sakamoto K, McCarthy A, Smith D, Green KA, Hardie DG, Ashworth A & Alessi DR (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24, 18101820.
  • Sakamoto K, Zarrinpashneh E, Budas GR, Pouleur AC, Dutta A, Prescott AR et al. (2006). Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. Am J Physiol Endocrinol Metab 290, E780E788.
  • Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JSC, Williams MR, Morrice N, Deak M & Alessi DR (2001). Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent protein kinase, but not its farnesylation at Cys433, is essential for LKB1 to suppress cell growth. J Biol Chem 276, 1946919482.
  • Satoh H, Nguyen MTA, Miles PDG, Imamura T, Usui I & Olefsky JM (2004). Adenovirus-mediated chronic ‘hyper-resistinemia’ leads to in vivo insulin resistance in normal rats. J Clin Invest 114, 224231.
  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA & Cantley LC (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 33293335.
  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, DePinho RA, Montminy M & Cantley LC (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 16421646.
  • Shimabukuro M, Koyama K, Chen G, Wang MY, Trieu F, Lee Y, Newgard CB & Unger RH (1997). Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci U S A 94, 46374641.
  • Song Z, Levin B, McArdle J, Bakhos N & Routh V (2001). Convergence of pre- and post-synaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 50, 26732681.
  • Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC & Hardie DG (2003). Elm1p is one of three upstream kinases for the Saccharomyces serevisiae SNF1 complex. Curr Biol 13, 12991305.
  • Tanaka T, Hidaka S, Masuzaki H, Yasue S, Minokoshi Y, Ebihara K et al. (2005). Skeletal muscle AMP-activated protein kinase phosphorylation parallels metabolic phenotype in leptin transgenic mice under dietary modification. Diabetes 54, 23652374.
  • Taylor EB, Hurst D, Greenwood LJ, Lamb JD, Cline TD, Sudweeks SN & Winder WW (2004). Endurance training increases LKB1 and MO25 protein but not AMP-activated protein kinase kinase activity in skeletal muscle. Am J Physiol Endocrinol Metab 287, E1082E1089.
  • Taylor EB, Lamb JD, Hurst RW, Chesser DG, Ellingson WJ, Greenwood LJ, Porter BB, Herway ST & Winder WW (2005). Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab 289, E960E968.
  • Tokunaga C, Yoshino YI & Yonezawa K (2004). mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 313, 443448.
  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, Lodish HF & Ruderman NB (2002). Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 99, 1630916313.
  • Tschop M, Smiley DL & Heiman ML (2000). Ghrelin induces adiposity in rodents. Nature 407, 908913.
  • Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T & Yoshimatsu H (2005). Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regul Pept 130, 97103.
  • Unger RH (2002). Lipotoxicity disease. Annu Rev Med 53, 319336.
  • Vinet J, Carra S, Blom JMC, Harey M, Brunello N, Barden N & Tascedda F (2003). Cloning of mouse Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) and characterization of CaMKKβ and CaMKKα distribution in the adult mouse brain. Mol Brain Res 111, 216221.
  • Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA & Steinberg GR (2006). CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 12, 541548.
  • Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Hohnstone SR, Carlson M & Carling D (2005). Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2, 2133.
  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD, Neumann D et al. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13, 20042008.
  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115124.
  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8, 12881295.
  • Yu X, McCorkle S, Wang M, Lee Y, Li J, Saha AK, Unger RH & Ruderman NB (2004). Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia 47, 20122021.
  • Zigman JM, Jones JE, Lee CE, Saper CB & Elmquist JK (2006). Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494, 528548.