SEARCH

SEARCH BY CITATION

References

  • Amato A, Connolly CN, Moss SJ & Smart TG (1999). Modulation of neuronal and recombinant GABAA receptors by redox reagents. J Physiol 517, 3550.
  • Angelotti TP & Macdonald RL (1993). Assembly of GABAA receptor subunits: α1β1 and α1β1γ2S subunits produce unique ion channels with dissimilar single-channel properties. J Neurosci 13, 14291440.
  • Angelotti TP, Uhler MD & Macdonald RL (1993). Assembly of GABAA receptor subunits: analysis of transient single-cell expression utilizing a fluorescent substrate/marker gene technique. J Neurosci 13, 14181428.
  • Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF & Orser BA (2001). Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by γ-aminobutyric acidA receptors in hippocampal neurons. Mol Pharmacol 59, 814824.
  • Bencsits E, Ebert V, Tretter V & Sieghart W (1999). A significant part of native γ-aminobutyric acidA receptors containing α4 subunits do not contain γ or δ subunits. J Biol Chem 274, 1961319616.
  • Berger T, Schwarz C, Kraushaar U & Monyer H (1998). Dentate gyrus basket cell GABAA receptors are blocked by Zn2+ via changes in their desensitization kinetics: an in situ patch-clamp and single-cell PCR study. J Neurosci 18, 24372448.
  • Böhme I, Rabe H & Lüddens H (2004). Four amino acids in the α subunits determine the γ-aminobutyric acid sensitivities of GABAA receptor subtypes. J Biol Chem 279, 3519335200.
  • Brickley SG, Cull-Candy SG & Farrant M (1999). Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J Neurosci 19, 29602973.
  • Brown N, Kerby J, Bonnert TP, Whiting PJ & Wafford KA (2002). Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors. Br J Pharmacol 136, 965974.
  • Brünig I, Scotti E, Sidler C & Fritschy JM (2002). Intact sorting, targeting, and clustering of γ-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol 443, 4355.
  • Burgard EC, Tietz EI, Neelands TR & Macdonald RL (1996). Properties of recombinant γ-aminobutyric acidA receptor isoforms containing the α5 subunit subtype. Mol Pharmacol 50, 119127.
  • Caraiscos VB, Elliott EM, You T, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF & Orser BA (2004). Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 101, 36623667.
  • Craig AM, Blackstone CD, Huganir RL & Banker G (1994). Selective clustering of glutamate and γ-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc Natl Acad Sci U S A 91, 1237312377.
  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluthmann H, Möhler H & Rudolph U (2002). Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc Natl Acad Sci U S A 99, 89808985.
  • Draguhn A, Verdorn TA, Ewert M, Seeburg PH & Sakmann B (1990). Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5, 781788.
  • Farrant M & Nusser Z (2005). Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci 6, 215229.
  • Feng HJ & Macdonald RL (2004). Multiple actions of propofol on αβγ and αβδ GABAA receptors. Mol Pharmacol 66, 15171524.
  • Fisher JL & Macdonald RL (1997). Single channel properties of recombinant GABAA receptors containing γ2 or δ subtypes expressed with α1 and β3 subtypes in mouse L929 cells. J Physiol 505, 283297.
  • Fritschy JM & Brünig I (2003). Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98, 299323.
  • Fritschy JM, Johnson DK, Möhler H & Rudolph U (1998). Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci Lett 249, 99102.
  • Gingrich KJ & Burkat PM (1998). Zn2+ inhibition of recombinant GABAA receptors: an allosteric, state-dependent mechanism determined by the γ-subunit. J Physiol 506, 609625.
  • Gunther U, Benson J, Benke D, Fritschy JM, Reyes G, Knoflach F et al. (1995). Benzodiazepine-insensitive mice generated by targeted disruption of the γ2 subunit gene of γ-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 92, 77497753.
  • Hadingham KL, Wingrove P, Le Bourdelles B, Palmer KJ, Ragan CI & Whiting PJ (1993a). Cloning of cDNA sequences encoding human α2 and α3 γ-aminobutyric acidA receptor subunits and characterization of the benzodiazepine pharmacology of recombinant α1-, α2-, α3-, and α5-containing human γ-aminobutyric acidA receptors. Mol Pharmacol 43, 970975.
  • Hadingham KL, Wingrove PB, Wafford KA, Bain C, Kemp JA, Palmer KJ, Wilson AW, Wilcox AS, Sikela JM & Ragan CI (1993b). Role of the β subunit in determining the pharmacology of human γ- aminobutyric acid type A receptors. Mol Pharmacol 44, 12111218.
  • Harrison NL & Gibbons SJ (1994). Zn2+: an endogenous modulator of ligand- and voltage-gated ion channels. Neuropharmacology 33, 935952.
  • Hosie AM, Dunne EL, Harvey RJ & Smart TG (2003). Zinc-mediated inhibition of GABAA receptors: descrete binding sites underlie subtype specificity. Nat Neurosci 6, 362369.
  • Isaacson JS (2000). Spillover in the spotlight. Curr Biol 10, R475R477.
  • Klausberger T, Sarto I, Ehya N, Fuchs K, Furtmüller R, Mayer B, Huck S & Sieghart W (2001). Alternate use of distinct intersubunit contacts controls GABAA receptor assembly and stoichiometry. J Neurosci 21, 91249133.
  • Knoflach F, Benke D, Wang Y, Scheurer L, Lüddens H, Hamilton BJ, Carter DB, Möhler H & Benson JA (1996). Pharmacological modulation of the diazepam-insensitive recombinant γ-aminobutyric acidA receptors α4β2γ2 and α6β2γ2. Mol Pharmacol 50, 12531261.
  • Krampfl K, Bufler J, Lepier A, Dudel J & Adelsberger H (2000). Desensitization characteristics of rat recombinant GABAA receptors consisting of α1β2γ2S and α1β2 subunits expressed in HEK293 cells. Neurosci Lett 278, 2124.
  • Krishek BJ, Moss SJ & Smart TG (1998). Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors. J Physiol 507, 639652.
  • Legendre P & Westbrook GL (1991). Noncompetitive inhibition of γ-aminobutyric acidA channels by Zn. Mol Pharmacol 39, 267274.
  • Lerma J, Herranz AS, Herreras O, Abraira V & Martin del Rio R (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384, 145155.
  • Luscher B & Keller CA (2004). Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 102, 195221.
  • Macdonald RL, Rogers CJ & Twyman RE (1989). Kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. J Physiol 410, 479499.
  • Mangan PS, Sun C, Carpenter M, Goodkin HP, Sieghart W & Kapur J (2005). Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors. Mol Pharmacol 67, 775788.
  • Mitchell SJ & Silver RA (2003). Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433445.
  • Mody I (2001). Distinguishing between GABAA receptors responsible for tonic and phasic conductances. Neurochem Res 26, 907913.
  • Mortensen M, Kristiansen U, Ebert B, Frølund B, Krogsgaard-Larsen P & Smart TG (2004). Activation of single heteromeric GABAA receptor ion channels by full and partial agonists. J Physiol 557, 389413.
  • Moss SJ & Smart TG (2001). Constructing inhibitory synapses. Nat Rev Neurosci 2, 240250.
  • Moss SJ, Smart TG, Porter NM, Nayeem N, Devine J, Stephenson FA, Macdonald RL & Barnard EA (1990). Cloned GABA receptors are maintained in a stable cell line: allosteric and channel properties. Eur J Pharmacol 189, 7788.
  • Nagaya N & Macdonald RL (2001). Two γ2L subunit domains confer low Zn2+ sensitivity to ternary GABAA receptors. J Physiol 532, 1730.
  • Overstreet LS & Westbrook GL (2001). Paradoxical reduction of synaptic inhibition by vigabatrin. J Neurophysiol 86, 596603.
  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W & Sperk G (2000). GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815850.
  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR & Seeburg PH (1989). Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582585.
  • Semyanov A, Walker MC & Kullmann DM (2003). GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6, 484490.
  • Semyanov A, Walker MC, Kullmann DM & Silver RA (2004). Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci 27, 262269.
  • Sieghart W (1995). Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47, 181234.
  • Sieghart W & Sperk G (2002). Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2, 795816.
  • Sigel E, Baur R, Trube G, Mohler H & Malherbe P (1990). The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5, 703711.
  • Sigel E & Buhr A (1997). The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 18, 425429.
  • Smart TG (1992). A novel modulatory binding site for zinc on the GABAA receptor complex in cultured rat neurones. J Physiol 447, 587625.
  • Smart TG & Constanti A (1986). Studies on the mechanism of action of picrotoxinin and other convulsants at the crustacean muscle GABA receptor. Proc R Soc Lond B Biol Sci 227, 191216.
  • Smart TG, Constanti A (1990). Differential effects of zinc on the vertebrate GABAA receptor complex. Br J Pharmacol 99, 643654.
  • Smart TG, Moss SJ, Xie X & Huganir RL (1991). GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br J Pharmacol 103, 18371839.
  • Smart TG, Xie X & Krishek BJ (1994). Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42, 393341.
  • Somogyi P, Fritschy JM, Benke D, Roberts JD & Sieghart W (1996). The γ2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the α1 and β2/3 subunits in hippocampus, cerebellum and globus pallidus. Neuropharmacology 35, 14251444.
  • Stell BM & Mody I (2002). Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J Neurosci 22, RC223.
  • Sur C, Fresu L, Howell O, McKernan RM & Atack JR (1999). Autoradiographic localization of α5 subunit-containing GABAA receptors in rat brain. Brain Res 822, 265270.
  • Sur C, Quirk K, Dewar D, Atack J & McKernan R (1998). Rat and human hippocampal α5 subunit-containing γ-aminobutyric acidA receptors have α5β3γ2 pharmacological characteristics. Mol Pharmacol 54, 928933.
  • Thomas P, Mortensen M, Hosie AM & Smart TG (2005). Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat Neurosci 8, 889897.
  • Tossman U, Jonsson G & Ungerstedt U (1986). Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol Scand 127, 533545.
  • Tretter V, Hauer B, Nusser Z, Mihalek RM, Hoger H, Homanics GE, Somogyi P & Sieghart W (2001). Targeted disruption of the GABAA receptor δ subunit gene leads to an up-regulation of γ2 subunit-containing receptors in cerebellar granule cells. J Biol Chem 276, 1053210538.
  • Ueno S, Bracamontes J, Zorumski C, Weiss DS & Steinbach JH (1997). Bicuculline and gabazine are allosteric inhibitors of channel opening of the GABAA receptor. J Neurosci 17, 625635.
  • Verdoorn TA, Draguhn A, Ymer S, Seeburg PH & Sakmann B (1990). Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4, 919928.
  • Wilkins ME & Smart TG (2002). Redox modulation of GABAA receptors obscured by Zn2+ complexation. Neuropharmacology 43, 938944.
  • Wooltorton JR, Moss SJ & Smart TG (1997). Pharmacological and physiological characterization of murine homomeric β3 GABAA receptors. Eur J Neurosci 9, 22252235.
  • Xi ZX, Ramamoorthy S, Shen H, Lake R, Samuvel DJ & Kalivas PW (2003). GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. J Neurosci 23, 34983505.
  • Xie X, Hider RC & Smart TG (1994). Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro. J Physiol 478, 7586.
  • Xie XM & Smart TG (1991). A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349, 521524.
  • Yeung JY, Canning KJ, Zhu G, Pennefather P, MacDonald JF & Orser BA (2003). Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol Pharmacol 63, 28.