SEARCH

SEARCH BY CITATION

References

  • Aromataris EC, Roberts ML, Barritt GJ & Rychkov GY (2006). Glucagon activates Ca2+ and Cl channels in rat hepatocytes. J Physiol 573, 611625.
  • Aronoff DM, Canetti C, Serezani CH, Luo M & Peters-Golden M (2005). Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP. J Immunol 174, 595599.
  • Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F & Renstrom E (2001). Priming of insulin granules for exocytosis by granular Cl uptake and acidification. J Cell Sci 114, 21452154.
  • Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP & Fakler B (1998). PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282, 11411144.
  • Bos JL (2003). Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4, 733738.
  • Branham MT, Mayorga LS & Tomes CN (2006). Calcium-induced acrosomal exocytosis requires cAMP acting through a PKA-independent, EPAC-mediated pathway. J Biol Chem 281, 86568666.
  • Cheung U, Atwood HL & Zucker RS (2006). Presynaptic effectors contributing to cAMP-induced synaptic potentiation in Drosophila. J Neurobiol 66, 273280.
  • Chin EC & Abayasekara DR (2004). Progesterone secretion by luteinizing human granulosa cells: a possible cAMP-dependent but PKA-independent mechanism involved in its regulation. J Endocrinol 183, 5160.
  • Christensen AE, Selheim F, De Rooij J, Dremier S, Schwede F, Dao KK, Martinez A, Maenhaut C, Bos JL, Genieser HG & Doskeland SO (2003). cAMP analog mapping of Epac1 and cAMP-kinase. Discriminating analogs demonstrate that Epac and cAMP-kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278, 3539435402.
  • Dao KK, Teigen K, Kopperud R, Hodneland E, Schwede F, Christensen AE, Martinez A & Doskeland SO (2006). Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem 281, 2150021511.
  • De Jesus ML, Stope MB, Oude Weernink PA, Mahlke Y, Borgermann C, Ananaba VN, Rimmbach C, Rosskopf D, Michel MC, Jakobs KH & Schmidt M (2006). Cyclic AMP-dependent and Epac-mediated activation of R-Ras by G protein-coupled receptors leads to phospholipase D stimulation. J Biol Chem 281, 2183721847.
  • De Rooij J, Rehmann H, Van Triest M, Cool RH, Wittinghofer A & Bos JL (2000). Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275, 2082920836.
  • De Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A & Bos JL (1998). Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474477.
  • DiPilato LM, Cheng X & Zhang J (2004). Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101, 1651311658.
  • Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS & Scott JD (2005). The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437, 574578.
  • Dostmann WRG, Taylor S, Genieser H-G, Jastorff B, Doskeland SO & Ogreid D (1990). Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinase I and II with analogs of adenosine 3′,5′-cyclic phosphorothioates. J Biol Chem 265, 1048410491.
  • Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S & Rorsman P (2003). SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121, 181197.
  • Enserink JM, Christensen AE, De Rooij J, Triest MV, Schwede F, Genieser HG, Døskeland SO, Blank JL & Bos JL (2002). A novel Epac-selective cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4, 901906.
  • Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T & Seino S (2002). Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 277, 5049750502.
  • Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K & Mochizuki N (2005). Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25, 136146.
  • Geng X, Li L, Watkins S, Robbins PD & Drain P (2003). The insulin secretory granule is the major site of KATP channels of the endocrine pancreas. Diabetes 52, 767776.
  • Gerlo S, Verdood P, Hooghe-Peters EL & Kooijman R (2006). Multiple cAMP-induced signaling cascades regulate prolactin expression in T cells. Cell Mol Life Sci 63, 9299.
  • Hashiguchi H, Nakazaki M, Koriyama N, Fukudome M, Aso K & Tei C (2006). Cyclic AMP/cAMP-GEF pathway amplifies insulin exocytosis induced by Ca2+ and ATP in rat islet beta-cells. Diabetes Metab Res Rev 22, 6471.
  • Helms MN, Chen XJ, Ramosevac S, Eaton DC & Jain L (2006). Dopamine regulation of amiloride-sensitive sodium channels in lung cells. Am J Physiol Lung Cell Mol Physiol 290, L710L722.
  • Holz GG (2004). Epac – A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta cell. Diabetes 53, 513.
  • Honegger KJ, Capuano P, Winter C, Bacic D, Stange G, Wagner CA, Biber J, Murer H & Hernando N (2006). Regulation of sodium-proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC). Proc Natl Acad Sci U S A 103, 803808.
  • Hucho TB, Dina OA & Levine JD (2005). Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci 25, 61196126.
  • Kaneko M & Takahashi T (2004). Presynaptic mechanism underlying cAMP-dependent synaptic potentiation. J Neurosci 24, 52025208.
  • Kang G, Chepurny OG & Holz GG (2001). cAMP-regulated guanine nucleotide exchange factor-II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells. J Physiol 536, 375385.
  • Kang G, Chepurny OG, Malester B, Rindler MJ, Rehmann H, Bos JL, Schwede F, Coetzee WA & Holz GG (2006). cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic β cells and rat INS-1 cells. J Physiol 573, 595609.
  • Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW & Holz GG (2005). A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic β cells. J Physiol 566, 173188.
  • Kang G & Holz GG (2003). Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic β cells. J Physiol 546, 175189.
  • Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F, Genieser HG & Holz GG (2003). Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta cells. J Biol Chem 278, 82798285.
  • Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H & Seino S (2001). Critical role of cAMP–GEFII–Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276, 4604646053.
  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE & Graybiel AM (1998). A family of cAMP-binding proteins that directly activate Rap1. Science 282, 22752279.
  • Kooistra MR, Corada M, Dejana E & Bos JL (2005). Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 579, 49664972.
  • Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG & Roe MW (2005). Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem 280, 3129431302.
  • Laroche-Joubert N, Marsy S, Michelet S, Imbert-Teboul M & Doucet A (2002). Protein kinase A-independent activation of ERK and H,K-ATPase by cAMP in native kidney cells: role of Epac I. J Biol Chem 277, 1859818604.
  • Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC & Quilliam LA (2006). The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 281, 25062514.
  • Liu G, Jacobo SM, Hilliard N & Hockerman GH (2006). Differential modulation of Cav1.2 and Cav1.3-mediated glucose-stimulated insulin secretion by cAMP in INS-1 cells. distinct roles for exchange protein directly activated by cAMP 2 (Epac2) and protein kinase A. J Pharmacol Exp Ther 318, 152160.
  • Lotfi S, Li Z, Sun J, Zuo Y, Lam PP, Kang Y, Rahimi M, Islam D, Wang P, Gaisano HY & Jin T (2006). Role of the exchange protein directly activated by cyclic adenosine 5′-monophosphate (Epac) pathway in regulating proglucagon gene expression in intestinal endocrine L cells. Endocrinology 147, 37273736.
  • Ma X, Zhang Y, Gromada J, Sewing S, Berggren PO, Buschard K, Salehi A, Vikman J, Rorsman P & Eliasson L (2005). Glucagon stimulates exocytosis in mouse and rat pancreatic alpha-cells by binding to glucagon receptors. Mol Endocrinol 19, 198212.
  • Maillet M, Robert SJ, Cacquevel M, Gastineau M, Vivien D, Bertoglio J, Zugaza JL, Fischmeister R & Lezoualc'h F (2003). Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat Cell Biol 5, 633639.
  • Mei FC, Qiao J, Tsygankova OM, Meinkoth JL, Quilliam LA & Cheng X (2002). Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 277, 1149711504.
  • Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompre AM, Vandecasteele G & Lezoualc'h F (2005). cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 97, 12961304.
  • Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L & Bryan J (2002). cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 51, 34403449.
  • Nikolaev VO, Bunemann M, Hein L, Hannawacker A & Lohse MJ (2004). Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279, 3721533728.
  • Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A & Carbone E (2004). Exposure to cAMP and β-adrenergic stimulation recruits CaV3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558, 433449.
  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y & Seino S (2000). cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2, 805811.
  • Pereira L, Morel E, Richard S. Lezoualc'h F & Gomez AM (2006). Cardiac Ca2+ sparks are modulated by Epac through CaMKII activation. 50th Annual Meeting of the Biophysical Society, Salt Lake City, Utah, 339-Pos.
  • Ponsioen B, Zhao J, Riedl J, Zwartkruis F, Van Der Krogt G, Zaccolo M, Moolenaar WH, Bos JL & Jalink K (2004). Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5, 11761180.
  • Rangarajan S, Enserink JM, Kuiperij HB, De Rooij J, Price LS, Schwede F & Bos JL (2003). Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol 160, 487493.
  • Rehmann H, Das J, Knipscheer P, Wittinghofer A & Bos JL (2006). Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439, 625628.
  • Renstrom E, Eliasson L & Rorsman P (1997). Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502, 105118.
  • Robert S, Maillet M, Morel E, Launay JM, Fischmeister R, Mercken L & Lezoualc'h F (2005). Regulation of the amyloid precursor protein ectodomain shedding by the 5-HT4 receptor and Epac. FEBS Lett 579, 11361142.
  • Sakaba T & Neher E (2001). Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held. Proc Natl Acad Sci U S A 98, 331336.
  • Sakaba T & Neher E (2003). Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 424, 775778.
  • Schmidt M, Evellin S, Weernink PA, Von Dorp F, Rehmann H, Lomasney JW & Jakobs KH (2001). A new phospholipase C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3, 10201024.
  • Sedej S, Rose T & Rupnik M (2005). cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 567, 799813.
  • Seino S & Shibasaki T (2005). PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85, 13031342.
  • Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y & Seino S (2004a). Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem 279, 79567961.
  • Shibasaki T, Sunaga Y & Seino S (2004b). Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis. Diabetes 53, S59S62.
  • Shimomura H, Imai A & Nashida T (2004). Evidence for the involvement of cAMP-GEF (Epac) pathway in amylase release from the rat parotid gland. Arch Biochem Biophys 431, 124128.
  • Shyng SL & Nichols CG (1998). Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282, 11381141.
  • Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y & Mochizuki N (2005). Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97, 655662.
  • Ster J, Janossy A, Barrere S, Bos J, Bockaert J & Fagni L (2005). A new neuronal pathway that activates big K+ channels via Epac. 7e Colloque de la Societe des neurosciences, Lille, 2005, I.32.
  • Tsuboi T, Da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP & Rutter GA (2003). Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem J 369, 287299.
  • Ueno H, Shibasaki T, Iwanaga T, Takahashi K, Yokoyama Y, Liu LM, Yokoi N, Ozaki N, Matsukura S, Yano H & Seino S (2001). Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform. Genomics 78, 9198.
  • Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B & Stork PJ (2006). Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 26, 21302145.
  • Yang LM, Rinke R & Korbmacher C (2006). Stimulation of the epithelial sodium channel (ENaC) by cAMP involves putative ERK phosphorylation sites in the C termini of the channel's beta and gamma subunit. J Biol Chem 281, 98599868.
  • Yarwood SJ (2005). Microtubule-associated proteins (MAPs) regulate cAMP signalling through exchange protein directly activated by cAMP (EPAC). Biochem Soc Trans 33, 13271329.
  • Yip KP (2006). Epac mediated Ca2+ mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 291, F882F890.
  • Zhong N & Zucker RS (2005). cAMP acts on exchange protein activated by cAMP/cAMP-regulated guanine nucleotide exchange protein to regulate transmitter release at the crayfish neuromuscular junction. J Neurosci 25, 208214.