SEARCH

SEARCH BY CITATION

References

  • Balnave CD & Allen DG (1996). The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle. J Physiol 492, 705713.
  • Bruton J, Pinniger GJ, Lannergren J & Westerblad H (2006). The effects of the myosin-II inhibitor N-benzyl-p-toluene sulphonamide on fatigue in mouse single intact toe muscle fibres. Acta Physiol 186, 5966.
  • Cheung A, Dantzig JA, Hollingworth S, Baylor SM, Goldman YE, Mitchison TJ & Straight AF (2002). A small-molecule inhibitor of skeletal muscle myosin II. Nat Cell Biol 4, 8388.
  • Dentel JN, Blanchard SG, Ankrapp DP, McCabe LR & Wiseman RW (2005). Inhibition of cross-bridge formation has no effect on contraction-associated phosphorylation of p38 MAPK in mouse skeletal muscle. Am J Physiol Cell Physiol 288, C824C830.
  • Derave W, Ai H, Ihlemann J, Witters LA, Kristiansen S, Richter EA & Ploug T (2000). Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes 49, 12811287.
  • Fujii N, Aschenbach WG, Musi N, Hirshman MF & Goodyear LJ (2004). Regulation of glucose transport by the AMP-activated protein kinase. Proc Nutr Soc 63, 205210.
  • Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM & Goodyear LJ (2005). AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280, 3903339041.
  • Goodyear LJ (2000). AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport? Exerc Sport Sci Rev 28, 113116.
  • Goodyear LJ & Kahn BB (1998). Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49, 235261.
  • Hardie DG, Hawley SA & Scott JW (2006). AMP-activated protein kinase – development of the energy sensor concept. J Physiol 574, 715.
  • Hayashi T, Wojtaszewski JF & Goodyear LJ (1997). Exercise regulation of glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab 273, E1039E1051.
  • Holloszy JO (2003). A forty-year memoir of research on the regulation of glucose transport into muscle. Am J Physiol Endocrinol Metab 284, E453E467.
  • Holloszy JO & Narahara HT (1965). Studies of tissue permeability. X. Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscle. J Biol Chem 240, 34933500.
  • Ihlemann J, Ploug T, Hellsten Y & Galbo H (1999). Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol Endocrinol Metab 277, E208E214.
  • Ihlemann J, Ploug T, Hellsten Y & Galbo H (2000). Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol Endocrinol Metab 279, E862E867.
  • Katz A & Westerblad H (1995). Insulin-mediated activation of glycogen synthase in isolated skeletal muscle: role of mitochondrial respiration. Biochim Biophys Acta 1244, 229232.
  • Lowry OH & Passonneau JV (1972). A Flexible System of Enzymatic Analysis. Academic Press, New York .
  • Marechal G, Coulton GR & Beckers-Bleukx G (1995). Mechanical power and myosin composition of soleus and extensor digitorum longus muscles of ky mice. Am J Physiol Cell Physiol 268, C513C519.
  • Mu J, Brozinick JT Jr, Valladares O, Bucan M & Birnbaum MJ (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7, 10851094.
  • Murrant CL & Reid MB (2001). Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 55, 236248.
  • Polekhina G, Gupta A, Michell BJ, Van Denderen B, Murthy S, Feil SC, Jennings IG, Campbell DJ, Witters LA, Parker MW, Kemp BE & Stapleton D (2003). AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol 13, 867871.
  • Quintero M, Colombo SL, Godfrey A & Moncada S (2006). Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103, 53795384.
  • Ren JM, Gulve EA, Cartee GD & Holloszy JO (1992). Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Am J Physiol Endocrinol Metab 263, E1086E1091.
  • Rose AJ & Richter EA (2005). Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology 20, 260270.
  • Sandström ME, Zhang SJ, Bruton J, Silva JP, Reid MB, Westerblad H & Katz A (2006). Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol 575, 251262.
  • Shashkin P, Koshkin A, Langley D, Ren JM, Westerblad H & Katz A (1995). Effects of CGS 9343B (a putative calmodulin antagonist) on isolated skeletal muscle. Dissociation of signaling pathways for insulin-mediated activation of glycogen synthase and hexose transport. J Biol Chem 270, 2561325618.
  • Shaw MA, Ostap EM & Goldman YE (2003). Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide. Biochemistry 42, 61286135.
  • Soukup T, Zacharova G & Smerdu V (2002). Fibre type composition of soleus and extensor digitorum longus muscles in normal female inbred Lewis rats. Acta Histochem 104, 399405.
  • Taylor SR & Rudel R (1970). Striated muscle fibers: inactivation of contraction induced by shortening. Science 167, 882884.
  • Toyoda T, Hayashi T, Miyamoto L, Yonemitsu S, Nakano M, Tanaka S, Ebihara K, Masuzaki H, Hosoda K, Inoue G, Otaka A, Sato K, Fushiki T & Nakao K (2004). Possible involvement of the alpha1 isoform of 5′AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab 287, E166E173.
  • Winder WW & Hardie DG (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol Endocrinol Metab 270, E299E304.
  • Winder WW & Hardie DG (1999). AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 277, E1E10.
  • Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, Clayton RD, Conley LM, Yoon S & Zhou B (1997). Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 82, 219225.
  • Wojtaszewski JF, Jorgensen SB, Hellsten Y, Hardie DG & Richter EA (2002). Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51, 284292.
  • Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B & Richter EA (2003). Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284, E813E822.
  • Wright DC, Hucker KA, Holloszy JO & Han DH (2004). Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53, 330335.
  • Young IS, Harwood CL & Rome LC (2003). Cross-bridge blocker BTS permits direct measurement of SR Ca2+ pump ATP utilization in toadfish swimbladder muscle fibers. Am J Physiol Cell Physiol 285, C781C787.
  • Zhang SJ, Andersson DC, Sandström ME, Westerblad H & Katz A (2006a). Cross-bridges account for only 20% of total ATP consumption during submaximal isometric contraction in mouse fast-twitch skeletal muscle. Am J Physiol Cell Physiol 291, C147C154.
  • Zhang SJ, Bruton JD, Katz A & Westerblad H (2006b). Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol 572, 551559.
  • Zuo L & Clanton TL (2005). Reactive oxygen species formation in the transition to hypoxia in skeletal muscle. Am J Physiol Cell Physiol 289, C207C216.