SEARCH

SEARCH BY CITATION

References

  • Anwyl R (1999). Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 366, 151158.
  • Artola A & Singer W (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16, 480487.
  • Batchelor AM & Garthwaite J (1997). Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385, 7477.
  • Birtoli B & Ulrich D (2004). Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons. J Neurosci 24, 49354940.
  • Charpak S & Gähwiler B (1991). Glutamate mediates a slow synaptic repsonse in hippocampal slices cultures. Proc R Soc Lond B Biol Sci 243, 221226.
  • Chavis P, Fagni L, Lansman JB & Bockaert J (1996). Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382, 719722.
  • Connors BW, Gutnick MJ & Prince DA (1982). Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48, 13021320.
  • Debanne D, Gähwiler BH & Thompson SM (1994). Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc Natl Acad Sci U S A 91, 11481152.
  • Dobrunz LE & Stevens CF (1999). Response of hippocampal synapses to natural stimulation patterns. Neuron 22, 157166.
  • Dodt H-U & Zieglgänsberger W (1990). Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537, 333336.
  • Feinmark SJ, Begum R, Tsvetkov E, Goussakov I, Funk CD, Siegelbaum SA & Bolshakov VY (2003). 12-lipoxygenase metabolites of arachidonic acid mediate metabotropic glutamate receptor-dependent long-term depression at hippocampal CA3-CA1 synapses. J Neurosci 23, 1142711435.
  • Feldman DE (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 4556.
  • House C & Kemp BE (1987). Protein kinase C contains a pseudosubstrate prototype in its regulatory domain. Science 238, 17261728.
  • Ito M (2001). Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81, 11431195.
  • Kampa BM, Letzkus JJ & Stuart GJ (2006). Requirement of dendritic calcium spikes for induction of spike-timing dependent synaptic plasticity. J Physiol 574, 283290.
  • Krahe R & Gabbiani F (2004). Burst firing in sensory systems. Nat Rev Neurosci 5, 1323.
  • Llinás RR (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 16541664.
  • Lüscher C, Xia H, Beattie EC, Carroll RC, Von Zastrow M, Malenka RC & Nicoll RA (1999). Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649658.
  • Malenka RC & Bear MF (2004). LTP and LTD: an embarrassment of riches. Neuron 30, 521.
  • Malinow R & Malenka RC (2002). AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25, 103126.
  • Markram H, Lübke J, Frotscher M & Sakmann B (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213215.
  • Nusser Z (1999). Subcellular distribution of neurotransmitter receptors and voltage-gated ion channels. In Dendrites, ed. StuartG, SprustonN & HäusserM, pp. 85113. Oxford University Press, Oxford .
  • Perrett SP, Dudek SM, Eagleman D, Montague PR & Friedlander MJ (2001). LTD induction in adult visual cortex: role of stimulus timing and inhibition. J Neurosci 21, 23082319.
  • Petersen CC, Hahn TT, Mehta M, Grinvald A & Sakmann B (2003). Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100, 1363813643.
  • Richter TA, Kolaj M & Renaud LP (2005). Low voltage-activated Ca2+ channels are coupled to Ca2+-induced Ca2+ release in rat thalamic midline neurons. J Neurosci 25, 82678271.
  • Rioult-Pedotti M-S, Friedman D & Donoghue JP (2000). Learning-induced LTP in neocortex. Science 290, 533536.
  • Rosanova M & Ulrich D (2005). Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25, 93989405.
  • Rose CR & Konnerth A (2001). Stores not just for storage: intracellular calcium release and synaptic plasticity. Neuron 31, 519522.
  • Seidenman KJ, Steinberg JP, Huganir R & Malinow R (2003). Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23, 92209228.
  • Sjöström PJ, Turrigiano GG & Nelson SB (2001). Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 11491164.
  • Sjöström PJ, Turrigiano GG & Nelson SB (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641654.
  • Steriade M, Timofeev I & Grenier F (2001). Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85, 19691985.
  • Stickgold R, Hobson JA, Fosse R & Fosse M (2001). Sleep, learning and dreams: off-line memory reprocessing. Science 294, 10521057.
  • Stuart GJ, Dodt HU & Sakmann B (1993). Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423, 511518.
  • Tononi G & Cirelli C (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62, 143150.
  • Volgushev M, Baraban P, Chistiakova M & Eysel UT (2000). Retrograde signaling with nitric oxide at neocortical synapses. Eur J Neurosci 12, 42554267.
  • Wang Y, Rowan MJ & Anwyl R (1997). Induction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca2+ influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores. J Neurophysiol 77, 812825.
  • Yang S-N, Tang Y-G & Zucker RS (1999). Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81, 781787.
  • Zhou YD, Acker CD, Netoff TI, Sen K & White JA (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102, 1912119125.