SEARCH

SEARCH BY CITATION

References

  • Akinlaja J & Sachs F (1998). The breakdown of cell membranes by electrical and mechanical stress. Biophys J 75, 247254.
  • Akitake B, Anishkin A & Sukharev S (2005). The ‘dashpot’ mechanism of stretch-dependent gating in MscS. J Gen Physiol 125, 143154.
  • Alderton JM & Steinhardt RA (2000a). Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 275, 94529460.
  • Alderton JM & Steinhardt RA (2000b). How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. Trends Cardiovasc Med 10, 268272.
  • Anderson RG (1998). The caveolae membrane system. Annu Rev Biochem 67, 199225.
  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K & Sackmann E (1998). Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75, 20382049.
  • Bett GCL & Sachs F (2000). Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. J Membr Biol 173, 255263.
  • Blake DJ, Weir A, Newey SE & Davies KE (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82, 291329.
  • Bonilla E, Schmidt B, Samitt CE, Miranda AF, Hays AP, DeOlivera AB, Chang HW, Servidei S, Ricci E & Younger DS (1988). Normal and dystrophin-deficient muscle fibers in carriers of the gene for Duchenne muscular dystrophy. Am J Pathol 133, 440445.
  • Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK & Sachs F (2006). Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: History, properties, mechanisms and pharmacology. Toxicon 49, 249270.
  • Brazer SC, Singh BB, Liu X, Swaim W & Ambudkar IS (2003). Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278, 2720827215.
  • Campbell KP & Kahl SD (1989). Association of dystrophin and an integral membrane glycoprotein. Nature 338, 259262.
  • De Backer F, Vandebrouck C, Gailly P & Gillis JM (2002). Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J Physiol 542, 855865.
  • De Deyne PG (2000). Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol 279, C1801C1811.
  • Ducret T, Vandebrouck C, Cao ML, Lebacq J & Gailly P (2006). Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. J Physiol 575, 913924.
  • Dulhunty AF & Franzini-Armstrong C (1975). The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J Physiol 250, 513539.
  • Evans E, Heinrich V, Ludwig F & Rawicz W (2003). Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85, 23422350.
  • Franco A Jr & Lansman JB (1990). Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344, 670673.
  • Franco-Obregon A Jr & Lansman JB (1994). Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481, 299309.
  • Franco-Obregon A & Lansman JB (2002). Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J Physiol 539, 391407.
  • Fung YC (1981). Biomechanics. Springer Verlag, New York .
  • Gailly P (2002). New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim Biophys Acta 1600, 3844.
  • Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H Jr, Kneitz B, Edelmann W & Lisanti MP (2001a). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276, 2142521433.
  • Galbiati F, Razani B & Lisanti MP (2001b). Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med 7, 435441.
  • Garcia J, McKinley K, Appel SH & Stefani E (1992). Ca2+ current and charge movement in adult single human skeletal muscle fibres. J Physiol 454, 183196.
  • Gil Z, Silberberg SD & Magleby KL (1999). Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels. Proc Natl Acad Sci U S A 96, 1459414599.
  • Grouselle M, Stuyvers B, Bonoron-Adele S, Besse P & Georgescauld D (1991). Digital-imaging microscopy analysis of calcium release from sarcoplasmic reticulum in single rat cardiac myocytes. Pflugers Arch 418, 109119.
  • Guharay F & Sachs F (1984). Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352, 685701.
  • Hamill OP & McBride DW Jr (1992). Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci U S A 89, 74627466.
  • Honore E, Patel AJ, Chemin J, Suchyna T & Sachs F (2006). Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci U S A 103, 68596864.
  • Imbert N, Vandebrouck C, Duport G, Raymond G, Hassoni AA, Constantin B, Cullen MJ & Cognard C (2001). Calcium currents and transients in co-cultured contracting normal and Duchenne muscular dystrophy human myotubes. J Physiol 534, 343355.
  • Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K & Shigekawa M (2003). A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161, 957967.
  • Kelly AM (1971). Sarcoplasmic reticulum and T-tubules in differentiating rat skeletal muscle. J Cell Biol 49, 335344.
  • Kelly SM & Price NC (1997). The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta 1338, 161185.
  • Kosawada T, Inoue K & Schmid-Schonbein GW (2005). Mechanics of curved plasma membrane vesicles: resting shapes, membrane curvature, and in-plane shear elasticity. J Biomech Eng 127, 229236.
  • Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, De Wenk MR & CP (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297, 11931196.
  • Leijendekker WJ, Passaquin AC, Metzinger L & Ruegg UT (1996). Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress. Br J Pharmacol 118, 611616.
  • Li H, Cook JD, Terry M, Spitzer NC & Ferrari MB (2004). Calcium transients regulate patterned actin assembly during myofibrillogenesis. Dev Dyn 229, 231242.
  • Li KX & Sperelakis N (1994). Electrogenic Na-K pump current in rat skeletal myoballs. J Cell Physiol 159, 181186.
  • Lollike K, Borregaard N & Lindau M (1998). Capacitance flickers and pseudoflickers of small granules, measured in the cell-attached configuration. Biophys J 75, 5359.
  • Lorenzon P, Giovannelli A, Ragozzino D, Eusebi F & Ruzzier F (1997). Spontaneous and repetitive calcium transients in C2C12 mouse myotubes during in vitro myogenesis. Eur J Neurosci 9, 800808.
  • McCarter GC & Steinhardt RA (2000). Increased activity of calcium leak channels caused by proteolysis near sarcolemmal ruptures. J Membr Biol 176, 169174.
  • Marchand E, Constantin B, Vandebrouck C, Raymond G & Cognard C (2001). Calcium homeostasis and cell death in Sol8 dystrophin-deficient cell line in culture. Cell Calcium 29, 8596.
  • Markin VS & Sachs F (2004). Thermodynamics of mechanosensitivity: lipid shape, membrane deformation and anesthesia. Biophys J 86, 370A.
  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B & Hamill OP (2005). TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7, 179185.
  • Morris CE (2001). Mechanoprotection of the plasma membrane in neurons and other non-erythroid cells by the spectrin-based membrane skeleton. Cell Mol Biol Lett 6, 703720.
  • Morris CE & Horn R (1991). Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251, 12461249.
  • Morris CE & Sigurdson WJ (1989). Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science 243, 807809.
  • Mukhin SI & Baoukina SV (2004). Inter-layer slide and stress relaxation in a bilayer lipid membrane in the patch-clamp setting. Biol Membr 21, 506517.
  • Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M & Imaizumi Y (2003). TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93, 829838.
  • Nakamura TY, Iwata Y, Sampaolesi M, Hanada H, Saito N, Artman M, Coetzee WA & Shigekawa M (2001). Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. Am J Physiol Cell Physiol 281, C690C699.
  • Nishizaka T, Seo R, Tadakuma H, Kinosita K Jr & Ishiwata S (2000). Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties. Biophys J 79, 962974.
  • Niu W & Sachs F (2003). Dynamic properties of stretch-activated K+ channels in adult rat atrial myocytes. Prog Biophys Mol Biol 82, 121135.
  • Opsahl LR & Webb WW (1994). Lipid-glass adhesion in giga-sealed patch-clamped membranes. Biophys J 66, 7579.
  • Parton RG, Way M, Zorzi N & Stang E (1997). Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136, 137154.
  • Pasternak C, Wong S & Elson EL (1995). Mechanical function of dystrophin in muscle cells. J Cell Biol 128, 355361.
  • Petrof BJ, Shrager JB, Stedman HH, Kelly AM & Sweeney HL (1993). Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90, 37103714.
  • Rybakova IN, Patel JR & Ervasti JM (2000). The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150, 12091214.
  • Saadat L, Pittman L & Menhart N (2006). Structural cooperativity in spectrin type repeats motifs of dystrophin. Biochim Biophys Acta 1764, 943954.
  • Sachs F (1990). Stretch-sensitive ion channels. Neuroscience 2, 4957.
  • Small DL & Morris CE (1994). Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am J Physiol Cell Physiol 267, C598C606.
  • Sokabe M & Sachs F (1990). The structure and dynamics of patch-clamped membranes: a study by differential interference microscopy. J Cell Biol 111, 599606.
  • Sokabe M, Sachs F & Jing Z (1991). Quantitative video microscopy of patch clamped membranes – stress, strain, capacitance and stretch channel activation. Biophys J 59, 722728.
  • Solsona C, Innocenti B & Fernandez JM (1998). Regulation of exocytotic fusion by cell inflation. Biophys J 74, 10611073.
  • Sombers LA, Hanchar HJ, Colliver TL, Wittenberg N, Cans A, Arbault S, Amatore C & Ewing AG (2004). The effects of vesicular volume on secretion through the fusion pore in exocytotic release from PC12 cells. J Neurosci 24, 303309.
  • Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Bricarelli FD, Minetti C, Sudol M & Lisanti MP (2000). Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 275, 3804838058.
  • Spassova MA, Hewavitharana T, Xu W, Soboloff J & Gill DL (2006). A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103, 1658616591.
  • Suchyna TM, Besch SR & Sachs F (2004a). Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. Phys Biol 1, 118.
  • Suchyna TM, Johnson JH, Clemo HF, Huang ZH, Gage DA, Baumgarten CM & Sachs F (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks stretch activated channels. J Gen Physiol 115, 583598.
  • Suchyna TM & Sachs F (2005). Membrane–cytoskeletal interface and mechanosensitive channels. In Cardiac Mechano-Electric Feedback and Arrhythmias, from Pipette to Patient, ed. KohlP, SachsF & FranzMR, pp. 4252. Elsevier Saunders, Philadelphia.
  • Suchyna TM, Tape SE, Koeppe RE, Andersen OS, Sachs F & Gottlieb PA (2004b). Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430, 235240.
  • Sukharev S, Sigurdson W, Kung C & Sachs F (1999). Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113, 525539.
  • Takayama I, Fujii Y, Terada N, Baba T, Kato Y, Fujino MA & Ohno S (2000). Topographical difference of cytoskeletal organization in smooth muscle cells of rat duodenum revealed by quick-freezing and deep-etching method. Histol Histopathol 15, 10591066.
  • Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF & Lisanti MP (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271, 22552261.
  • Thomsen P, Roepstorff K, Stahlhut M & Van Deurs B (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13, 238250.
  • Thorn H, Stenkula KG, Karlsson M, Ortegren U, Nystrom FH, Gustavsson J & Stralfors P (2003). Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol Biol Cell 14, 39673976.
  • Vaghy PL, Fang J, Wu W & Vaghy LP (1998). Increased caveolin-3 levels in mdx mouse muscles. FEBS Lett 431, 125127.
  • Vandebrouck C, Duport G, Raymond G & Cognard C (2002). Hypotonic medium increases calcium permeant channels activity in human normal and dystrophic myotubes. Neurosci Lett 323, 239243.
  • Wiggins P & Phillips R (2005). Membrane–protein interactions in mechanosensitive channels. Biophys J 88, 880902.
  • Yeung EW, Head SI & Allen DG (2003). Gadolinium reduces short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres. J Physiol 552, 449458.
  • Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F & Allen DG (2005). Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562, 367380.
  • Zhang Y & Hamill OP (2000). On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol 523, 101115.