SEARCH

SEARCH BY CITATION

References

  • Abi-Gerges N, Ji GJ, Lu ZJ, Fischmeister R, Hescheler J & Fleischmann BK (2000). Functional expression and regulation of the hyperpolarization activated non-selective cation current in embryonic stem cell-derived cardiomyocytes. J Physiol 523, 377389.
  • Banach K, Halbach MD, Hu P, Hescheler J & Egert U (2003). Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol Heart Circ Physiol 284, H2114H2123.
  • Bare DJ, Kettlun CS, Liang M, Bers DM & Mignery GA (2005). Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280, 1591215920.
  • Bogdanov KY, Vinogradova TM & Lakatta EG (2001). Sinoatrial nodal cell ryanodine receptor and Na+-Ca 2+ exchanger: molecular partners in pacemaker regulation. Circ Res 88, 12541258.
  • Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV & Wobus AM (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91, 189201.
  • Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ & Peppiatt CM (2002). 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16, 11451150.
  • Bootman M, Niggli E, Berridge M & Lipp P (1997). Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol 499, 307314.
  • Boyett MR, Dobrzynski H, Lancaster MK, Jones SA, Honjo H & Kodama I (2003). Sophisticated architecture is required for the sinoatrial node to perform its normal pacemaker function. J Cardiovasc Electrophysiol 14, 104106.
  • Carmeliet E, Morad M, Van der Heyden G & Vereecke J (1986). Electrophysiological effects of tetracaine in single guinea-pig ventricular myocytes. J Physiol 376, 143161.
  • Cribbs LL, Martin BL, Schroder EA, Keller BB, Delisle BP & Satin J (2001). Identification of the T-type calcium channel (Cav3.1d) in developing mouse heart. Circ Res 88, 403407.
  • Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Perez CG & Mejia-Alvarez R (2004). Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol 286, H971H978.
  • Fabiato A (1985a). Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85, 247289.
  • Fabiato A (1985b). Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85, 291320.
  • Fijnvandraat AC, Van Ginneken AC, De Boer PA, Ruijter JM, Christoffels VM, Moorman AF & Lekanne DRH (2003). Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc Res 58, 399409.
  • Fowler MR, Naz JR, Graham MD, Bru-Mercier G, Harrison SM & Orchard CH (2005). Decreased Ca2+ extrusion via Na+/Ca2+ exchange in epicardial left ventricular myocytes during compensated hypertrophy. Am J Physiol Heart Circ Physiol 288, H2431H2438.
  • Franzini-Armstrong C, Protasi F & Tijskens P (2005). The assembly of calcium release units in cardiac muscle. Ann N Y Acad Sci 1047, 7685.
  • Fu JD, Li J, Tweedie D Yu HM, Chen L, Wang R, Riordon DR, Brugh SA, Wang SQ, Boheler KR & Yang HT (2006). Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca2+ transients and contraction in cardiomyocytes derived from embryonic stem cells. FASEB J 20, 181183.
  • Fujii S, Hirota A & Kamino K (1981a). Optical recording of development of electrical activity in embryonic chick heart during early phases of cardiogenesis. J Physiol 311, 147160.
  • Fujii S, Hirota A & Kamino K (1981b). Optical indications of pace-maker potential and rhythm generation in early embryonic chick heart. J Physiol 312, 253263.
  • Gorza L, Vettore S, Tessaro A, Sorrentino V & Vitadello M (1997). Regional and age-related differences in mRNA composition of intracellular Ca2+-release channels of rat cardiac myocytes. J Mol Cell Cardiol 29, 10231036.
  • Gryshchenko O, Fischer IR, Dittrich M, Viatchenko-Karpinski S, Soest J, Bohm-Pinger MM, Igelmund P, Fleischmann BK & Hescheler J (1999). Role of ATP-dependent K+ channels in the electrical excitability of early embryonic stem cell-derived cardiomyocytes. J Cell Sci 112, 29032912.
  • Gryshchenko O, Lu ZJ, Fleischmann BK & Hescheler J (2000). Outwards currents in embryonic stem cell-derived cardiomyocytes. Pflugers Arch 439, 798807.
  • He JQ, Ma Y, Lee Y, Thomson JA & Kamp TJ (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93, 3239.
  • Hescheler J, Wartenberg M, Fleischmann BK, Banach K, Acker H & Sauer H (2002). Embryonic stem cells as a model for the physiological analysis of the cardiovascular system. Methods Mol Biol 185, 169187.
  • Huser J, Blatter LA & Lipsius SL (2000). Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol 524, 415422.
  • Jaconi M, Bony C, Richards SM, Terzic A, Arnaudeau S, Vassort G & Puceat M (2000). Inositol 1,4,5-trisphosphate directs Ca2+ flow between mitochondria and the endoplasmic/sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca2+ spiking. Mol Biol Cell 11, 18451858.
  • Ji GJ, Fleischmann BK, Bloch W, Feelisch M, Andressen C, Addicks K & Hescheler J (1999). Regulation of the L-type Ca2+ channel during cardiomyogenesis: switch from NO to adenylyl cyclase-mediated inhibition. FASEB J 13, 313324.
  • Kapur N, Mignery G & Banach K (2006). Cell cycle dependent calcium oscillations in mouse embryonic stem cells. Am J Physiol Cell Physiol Epub ahead of print.
  • Klockner U, Lee JH, Cribbs LL, Daud A, Hescheler J, Pereverzev A, Perez-Reyes E & Schneider T (1999). Comparison of the Ca2+ currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11, 41714178.
  • Klug MG, Soonpaa MH, Koh GY & Field LJ (1996). Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98, 216224.
  • Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, Manzke O, Bloch W, Bohlen H, Hescheler J & Fleischmann BK (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J 19, 577579.
  • Komuro H, Hirota A, Yada T, Sakai T, Fujii S & Kamino K (1985). Effects of calcium on electrical propagation in early embryonic precontractile heart as revealed by multiple-site optical recording of action potentials. J Gen Physiol 85, 365382.
  • Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA, Creazzo TL & Conway SJ (2001). Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J 15, 12091211.
  • Li L, Chu G, Kranias EG & Bers DM (1998). Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am J Physiol Heart Circ Physiol 274, H1335H1347.
  • Li X, Zima AV, Sheikh F, Blatter LA & Chen J (2005). Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate (IP3)-receptor type 2-deficient mice. Circ Res 96, 12741281.
  • Lipsius SL, Huser J & Blatter LA (2001). Intracellular Ca2+ release sparks atrial pacemaker activity. News Physiol Sci 16, 101106.
  • Maltsev VA, Ji GJ, Wobus AM, Fleischmann BK & Hescheler J (1999). Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ Res 84, 136145.
  • Maltsev VA, Rohwedel J, Hescheler J & Wobus AM (1993). Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44, 4150.
  • Mery A, Aimond F, Menard C, Mikoshiba K, Michalak M & Puceat M (2005). Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-dependent calcium signaling. Mol Biol Cell 16, 24142423.
  • Meyer N, Jaconi M, Landopoulou A, Fort P & Puceat M (2000). A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett 478, 151158.
  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W & Roder JC (1993). Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90, 84248428.
  • Narita N, Bielinska M & Wilson DB (1997). Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 124, 37553764.
  • Perez CG, Copello JA, Li Y, Karko KL, Gomez L, Ramos-Franco J, Fill M, Escobar AL & Mejia-Alvarez R (2005). Ryanodine receptor function in newborn rat heart. Am J Physiol Heart Circ Physiol 288, H2527H2540.
  • Proven A, Roderick HL, Conway SJ, Berridge MJ, Horton JK, Capper SJ & Bootman MD (2006). Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. J Cell Sci 119, 33633375.
  • Puceat M & Jaconi M (2005). Ca2+ signalling in cardiogenesis. Cell Calcium 38, 383389.
  • Puceat M, Travo P, Quinn MT & Fort P (2003). A dual role of the GTPase Rac in cardiac differentiation of stem cells. Mol Biol Cell 14, 27812792.
  • Robinson RB Yu H, Chang F & Cohen IS (1997). Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells. Pflugers Arch 433, 533535.
  • Rosemblit N, Moschella MC, Ondriasa E, Gutstein DE, Ondrias K & Marks AR (1999). Intracellular calcium release channel expression during embryogenesis. Dev Biol 206, 163177.
  • Sakai T, Fujii S, Hirota A & Kamino K (1983). Optical evidence for calcium-action potentials in early embryonic precontractile chick heart using a potential-sensitive dye. J Membr Biol 72, 205212.
  • Sanders L, Rakovic S, Lowe M, Mattick PA & Terrar DA (2006). Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol 571, 639649.
  • Satoh H & Sperelakis N (1993). Hyperpolarization-activated inward current in embryonic chick cardiac myocytes: developmental changes and modulation by isoproterenol and carbachol. Eur J Pharmacol 240, 283290.
  • Sauer H, Theben T, Hescheler J, Lindner M, Brandt MC & Wartenberg M (2001). Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells. Am J Physiol Heart Circ Physiol 281, H411H421.
  • Schlotthauer K & Bers DM (2000). Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87, 774780.
  • Sheehan KA & Blatter LA (2003). Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. J Physiol 546, 119135.
  • Strom TB, Field LJ & Ruediger M (2002). Allogeneic stem cells, clinical transplantation and the origins of regenerative medicine. Curr Opin Immunol 14, 601605.
  • Takemura H, Yasui K, Opthof T, Niwa N, Horiba M, Shimizu A, Lee JK, Honjo H, Kamiya K, Ueda Y & Kodama I (2005). Subtype switching of L-Type Ca2+ channel from Cav1.3 to Cav1.2 in embryonic murine ventricle. Circ J 69, 14051411.
  • Thastrup O, Cullen PJ, Drobak BK, Hanley MR & Dawson AP (1990). Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci U S A 87, 24662470.
  • Viatchenko-Karpinski S, Fleischmann BK, Liu Q, Sauer H, Gryshchenko O, Ji GJ & Hescheler J (1999). Intracellular Ca2+ oscillations drive spontaneous contractions in cardiomyocytes during early development. Proc Natl Acad Sci U S A 96, 82598264.
  • Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D et al. (2006). High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res 98, 505514.
  • Vinogradova TM, Maltsev VA, Bogdanov KY, Lyashkov AE & Lakatta EG (2005). Rhythmic Ca2+ oscillations drive sinoatrial nodal cell pacemaker function to make the heart tick. Ann N Y Acad Sci 1047, 138156.
  • Wilcox RA, Primrose WU, Nahorski SR & Challiss RA (1998). New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci 19, 467475.
  • Wobus AM & Boheler KR (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85, 635678.
  • Wu X & Bers DM (2006). Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99, 283291.
  • Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH & Bers DM (2006). Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116, 675682.
  • Yang HT, Tweedie D, Wang S, Guia A, Vinogradova T, Bogdanov K, Allen PD, Stern MD, Lakatta EG & Boheler KR (2002). The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc Natl Acad Sci U S A 99, 92259230.
  • Zhang YM, Shang L, Hartzell C, Narlow M, Cribbs L & Dudley SC Jr (2003). Characterization and regulation of T-type Ca2+ channels in embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285, H2770H2779.
  • Zima AV & Blatter LA (2004). Inositol-1,4,5-trisphosphate-dependent Ca2+ signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol 555, 607615.