G protein-independent neuromodulatory action of adenosine on metabotropic glutamate signalling in mouse cerebellar Purkinje cells


  • K. Hashimoto and H. Kassai contributed equally to this work. This paper has online supplemental material.

Corresponding author M. Kano: Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan. Email: mkano@cns.med.osaka-u.ac.jp


Adenosine receptors (ARs) are G protein-coupled receptors (GPCRs) mediating the neuromodulatory actions of adenosine that influence emotional, cognitive, motor, and other functions in the central nervous system (CNS). Previous studies show complex formation between ARs and metabotropic glutamate receptors (mGluRs) in heterologous systems and close colocalization of ARs and mGluRs in several central neurons. Here we explored the possibility of intimate functional interplay between Gi/o protein-coupled A1-subtype AR (A1R) and type-1 mGluR (mGluR1) naturally occurring in cerebellar Purkinje cells. Using a perforated-patch voltage-clamp technique, we found that both synthetic and endogenous agonists for A1R induced continuous depression of a mGluR1-coupled inward current. A1R agonists also depressed mGluR1-coupled intracellular Ca2+ mobilization monitored by fluorometry. A1R indeed mediated this depression because genetic depletion of A1R abolished it. Surprisingly, A1R agonist-induced depression persisted after blockade of Gi/o protein. The depression appeared to involve neither the cAMP-protein kinase A cascade downstream of the alpha subunits of Gi/o and Gs proteins, nor cytoplasmic Ca2+ that is suggested to be regulated by the beta-gamma subunit complex of Gi/o protein. Moreover, A1R did not appear to affect Gq protein which mediates the mGluR1-coupled responses. These findings suggest that A1R modulates mGluR1 signalling without the aid of the major G proteins. In this respect, the A1R-mediated depression of mGluR1 signalling shown here is clearly distinguished from the A1R-mediated neuronal responses described so far. These findings demonstrate a novel neuromodulatory action of adenosine in central neurons.