SEARCH

SEARCH BY CITATION

References

  • Alderton JM & Steinhardt RA (2000). Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 275, 94529460.
  • Allen DG, Whitehead NP & Yeung EW (2005). Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567, 723735.
  • Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL & Campbell KP (2003). Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168172.
  • Bartoli M, Bourg N, Stockholm D, Raynaud F, Delevacque A, Han Y, Borel P, Seddik K, Armande N & Richard I (2006). A mouse model for monitoring calpain activity under physiological and pathological conditions. J Biol Chem 281, 3967239680.
  • Burdi R, Didonna MP, Pignol B, Nico B, Mangieri D, Rolland JF, Camerino C, Zallone A, Ferro P, Andreetta F, Confalonieri P & De Luca A (2006). First evaluation of the potential effectiveness in muscular dystrophy of a novel chimeric compound, BN 82270, acting as calpain-inhibitor and anti-oxidant. Neuromuscul Disord 16, 237248.
  • Cheung A, Dantzig JA, Hollingworth S, Baylor SM, Goldman YE, Mitchison TJ & Straight AF (2002). A small molecule inhibitor of skeletal muscle myosin II. Nat Cell Biol 4, 8388.
  • Cottin P, Vidalenc PL & Ducastaing A (1981). Ca2+-dependent association between a Ca2+-activated neutral proteinase (CaANP) and its specific inhibitor. FEBS Lett 136, 221224.
  • De Backer F, Vandebrouck C, Gailly P & Gillis JM (2002). Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J Physiol 542, 855865.
  • De Tullio R, Passalacqua M, Averna M, Salamino F, Pontremoli S & Melloni E (1999). Changes in intracellular localization of calpastatin during calpain activation. Biochem J 343, 467472.
  • Deconinck N, Tinsley J, De Backer F, Fisher R, Kahn D, Phelps S, Davies K & Gillis JM (1997). Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 3, 12161221.
  • Ducret T, Vandebrouck C, Cao ML, Lebacq J & Gailly P (2006). Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. J Physiol 575, 913924.
  • Franco-Obregón AJ & Lansman JB (1994). Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481, 299309.
  • Gailly P, Boland B, Himpens B, Casteels R & Gillis JM (1993). Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium 14, 473483.
  • Gillis JM (1999). Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J Muscle Res Cell Motil 20, 605625.
  • Gillis JM (2007). The functional consequences of dystrophin deficiency in skeletal muscles. In Protein Misfolding, Aggegation, and Conformational Diseases. Part B: Molecular Mechanisms of Conformational Diseases, ed. UverskyV Nand FinkA, pp. 409433. Spinger, New York .
  • Goll DE, Thompson VF, Li H, Wei W & Cong J (2003). The calpain system. Physiol Rev 83, 731801.
  • Haeberle JR, Coolican SA, Evan A & Hathaway DR (1985). The effects of a calcium dependent protease on the ultrastructure and contractile mechanics of skinned uterine smooth muscle. J Muscle Res Cell Motil 6, 347363.
  • Han R, Grounds MD & Bakker AJ (2006). Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18. Cell Calcium 40, 299307.
  • Inomata M, Hayashi M, Ohno-Iwashita Y, Tsubuki S, Saido TC & Kawashima S (1996). Involvement of calpain in integrin-mediated signal transduction. Arch Biochem Biophys 328, 129134.
  • Kapprell HP & Goll DE (1989). Effect of Ca2+ on binding of the calpains to calpastatin. J Biol Chem 264, 1788817896.
  • Kumamoto T, Kleese WC, Cong JY, Goll DE, Pierce PR & Allen RE (1992). Localization of the Ca2+-dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle. Anat Rec 232, 6077.
  • Kumamoto T, Ueyama H, Sugihara R, Kominami E, Goll DE & Tsuda T (1997). Calpain and cathepsins in the skeletal muscle of inflammatory myopathies. Eur Neurol 37, 176181.
  • Kumar A, Khandelwal N, Malya R, Reid MB & Boriek AM (2004). Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18, 102113.
  • McCarter GC & Steinhardt RA (2000). Increased activity of calcium leak channels caused by proteolysis near sarcolemmal ruptures. J Membr Biol 176, 169174.
  • Mallouk N & Allard B (2000). Stretch-induced activation of Ca 2+-activated K+ channels in mouse skeletal muscle fibers. Am J Physiol Cell Physiol 278, C473C479.
  • Mellgren RL, Zhang W, Miyake K & McNeil PL (2006). Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem 282, 25672575.
  • Moens P, Baatsen PH & Maréchal G (1993). Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil 14, 446451.
  • Murphy RM, Snow RJ & Lamb GD (2006a). μ-Calpain and calpain-3 are not autolyzed with exhaustive exercise in humans. Am J Physiol Cell Physiol 290, C116C122.
  • Murphy RM, Verburg E & Lamb GD (2006b). Ca2+-activation of diffusible and bound pools of μ-calpain in rat skeletal muscle. J Physiol 576, 595612.
  • Nakamura A, Yoshida K, Ueda H, Takeda S & Ikeda S (2005). Up-regulation of mitogen activated protein kinases in mdx skeletal muscle following chronic treadmill exercise. Biochim Biophys Acta 1740, 326331.
  • Pinniger GJ, Bruton JD, Westerblad H & Ranatunga KW (2005). Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres. J Muscle Res Cell Motil 26, 135141.
  • Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N et al . (1995). Mutations in the proteolytic enzyme calpain-3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 2740.
  • Richard I, Roudaut C, Marchand S, Baghdiguian S, Herasse M, Stockholm D et al . (2000). Loss of calpain-3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IκBα/nuclear factor κB pathway perturbation in mice. J Cell Biol 151, 15831590.
  • Rosser BG, Powers SP & Gores GJ (1993). Calpain activity increases in hepatocytes following addition of ATP. Demonstration by a novel fluorescent approach. J Biol Chem 268, 2359323600.
  • Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y & Suzuki K (1989). Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and μ-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem 264, 2010620111.
  • Spencer MJ, Croall DE & Tidball JG (1995). Calpains are activated in necrotic fibers from mdx dystrophic mice. J Biol Chem 270, 1090910914.
  • Spencer MJ & Mellgren RL (2002). Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 11, 26452655.
  • Spencer MJ & Tidball JG (1992). Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res 203, 107114.
  • Stockholm D, Bartoli M, Sillon G, Bourg N, Davoust J & Richard I (2005). Imaging calpain protease activity by multiphoton FRET in living mice. J Mol Biol 346, 215222.
  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM & Sachs F (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115, 583598.
  • Tompa P, Toth-Boconadi R & Friedrich P (2001). Frequency decoding of fast calcium oscillations by calpain. Cell Calcium 29, 161170.
  • Tsubuki S, Saito Y, Tomioka M, Ito H & Kawashima S (1996). Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem (Tokyo) 119, 572576.
  • Turner PR, Westwood T, Regen CM & Steinhardt RA (1988). Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 355, 735738.
  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H & Gailly P (2002). Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158, 10891096.
  • Verburg E, Murphy RM, Stephenson DG & Lamb GD (2005). Disruption of excitation-contraction coupling and titin by endogenous Ca2+-activated proteases in toad muscle fibres. J Physiol 564, 775790.
  • Xu L & Deng X (2004). Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induces phosphorylation of μ- and m-calpain in association with increased secretion, cell migration, and invasion. J Biol Chem 279, 5368353690.
  • Xu L & Deng X (2006). Protein kinase Cι promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of μ- and m-calpains. J Biol Chem 281, 44574466.