SEARCH

SEARCH BY CITATION

References

  • Bao G, Metreveli N, Li R, Taylor A & Fletcher E (1997). Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol 83, 95101.
  • Beitner-Johnson D, Leibold J & Millhorn DE (1998). Hypoxia regulates the cAMP- and Ca2+/calmodulin signaling systems in PC12 cells. Biochem Biophys Res Commun 241, 6166.
  • Bijlenga P, Liu J-H, Espinos E, Haenggeli C-A, Fischer-Lougheed J, Bader CR & Bernheim L (2000). T-type α1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci U S A 97, 76277632.
  • Bournaud R, Hidalgo J, Yu H, Jaimovich E & Shimahara T (2001). Low threshold T-type calcium current in rat embryonic chromaffin cells. J Physiol 537, 3544.
  • Carabelli V, Giancippoli A, Baldelli P, Carbone E & Artalejo AR (2003). Distinct potentiation of L-type currents and secretion by cAMP in rat chromaffin cells. Biophys J 85, 13261337.
  • Carbone E & Lux D (1987). Single low-voltage-activated calcium channels in chick and rat sensory neurones. J Physiol 386, 571801.
  • Carbone E, Marcantoni A, Giancippoli A, Guido D & Carabelli V (2006). T-type channels-secretion coupling: evidence for a fast low-threshold exocytosis. Pflugers Arch 453, 373383.
  • Cesetti T, Hernandez-Gujio JM, Baldelli P, Carabelli V & Carbone E (2003). Opposite action of β1- and β2-adrenergic receptors on CaV1, L-channel current in rat adrenal chromaffin cells. J Neurosci 23, 7383.
  • Chouabe C, Espinosa L, Megas P, Chakir A, Ropugier O, Freminet A & Bonvallet R (1997). Reduction of ICa,L and Ito1 density in hypertrophied right ventricular cells by simulated high altitude in adult rats. J Mol Cell Cardiol 29, 193206.
  • Chung J-M, Huguenard JR & Prince DA (1993). Transient enhancement of low-threshold calcium current in thalamic relay after corticectomy. J Neurophysiol 702, 2027.
  • Crunelli V, Tóth TI, Cope DW, Blethyn K & Hughes SW (2005). The ‘window’ T-type calcium current in brain dynamics of different behavioral states. J Physiol 562, 121129.
  • Cummins EP & Taylor CT (2005). Hypoxia-responsive transcription factors. Pflugers Arch 450, 363371.
  • Del Toro R, Levitsky KL, López-Barneo J & Chiara MD (2003). Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem 278, 2231622324.
  • Fearon IM, Randall AD, Pérez-Reyes E & Peers C (2000). Modulation of recombinant T-type Ca2+ channels by hypoxia and glutathione. Pflugers Arch 441, 181188.
  • Fletcher EC (2001). Physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol 90, 16001605.
  • Fung M-L, Li H-Y & Wong T-M (2002). Forskolin fails to activate L-type calcium current in hypertrophied cardiomyocytes of chronically hypoxic rats. Life Sci 70, 18011809.
  • Giancippoli A, Novara M, De Luca A, Baldelli P, Marcantoni A, Carbone E & Carabelli V (2006). Low-threshold exocytosis induced by cAMP-recruited Cav3.2 (α1H) channels in rat chromaffin cells. Biophys J 90, 18301841.
  • Green KN, Boyle JP & Peers CJ (2002). Hypoxia potentiates exocytosis and Ca2+ channels in PC12 cells via increased amyloid β-peptide formation and reactive oxygen species generation. J Physiol 541, 10131023.
  • Hempleman SC (1996). Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. J Neurophysiol 76, 18801886.
  • Hollins B & Ikeda SR (1996). Inward currents underlying action potentials in rat adrenal chromaffin cells. J Neurophysiol 76, 11951211.
  • Horrigan FT & Bookman RJ (1994). Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13, 11191129.
  • Jan Y & Jan YN (1976). L-Glutamate as an excitatory transmitter at the drosophila larval neuromuscular junction. J Physiol 262, 215236.
  • Johnson TS, Young JB & Landsberg L (1983). Sympathoadrenal responses to acute and chronic hypoxia in the rat. J Clin Invest 71, 12631272.
  • Kobayashi S, Beitner-Johnson D, Laura Conforti L & Millhorn DE (1998). Chronic hypoxia reduces adenosine A2A receptor-mediated inhibition of calcium current in rat PC12 cells via downregulation of protein kinase. J Physiol 512, 351363.
  • Lee JH, Gomora JC, Cribbs LL & Perez-Reyes E (1999). Nickel block of three cloned T-type calcium chanels: low concentrations selectively block alpha 1H. Biophys J 77, 30343042.
  • Lewis CA (1979). Ion concentration-dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol 286, 417445.
  • Lin M-J, Leung GPH, Zhang W-M, Yang X-R, Yip K-P, Tse C-M & Sham JSK (2004). Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells. A novel mechanism of hypoxic pulmonary hypertension. Circ Res 95, 496505.
  • López-Barneo J, Del Toro R, Levitsky KL, Chiara MD & Ortega-Sáenz P (2003). Regulation of oxygen sensing by ion channels. J Appl Physiol 96, 11871195.
  • Machado JD, Morales A, Gómez JF & Borges R (2001). cAMP modulates exocytosis kinetics and increases quantal size in chromaffin cells. Mol Pharmacol 60, 514520.
  • Mariot P, Vanoverbergher K, Lalevée N, Rossier MF & Prevarskaya N (2002). Overexpression of an α1H (CaV3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277, 1082410833.
  • McRory JE, Santi CM, Hamming KS, Mezeyova J, Sutton KG, Baillie DL, Stea A & Snutch TP (2001). Molecular and functional characterization of a family of rat brain T-type calcium channels. J Biol Chem 276, 39994011.
  • Montoro RJ, Urena J, Fernández-Chacón R, Alvarez de Toledo G & López-Barneo J (1996). Oxygen sensing by ion channels and chemotransduction in single glomus cells. J Gen Physiol 107, 133143.
  • Neely A & Lingle C (1992). Two components of calcium-activated potassium current in rat adrenal chromaffin cells. J Physiol 453, 97134.
  • Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A & Carbone E (2004). Exposure to cAMP and β-adrenergic stimulation recruits CaV3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558, 433449.
  • Nuss HB & Houser SR (1993). T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circ Res 73, 777782.
  • Obukhov AG & Nowycky MC (2002). TRPC4 can be activated by G-protein-coupled receptors and provides sufficient Ca2+ to trigger exocytosis in neuroendocrine cells. J Biol Chem 277, 1617216178.
  • Park YB, Herrington J, Babcock DF & Hille B (1996). Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells. J Physiol 492, 329346.
  • Peña F & Ramirez J-M (2005). Hypoxia-induced changes in neuronal network properties. Mol Neurobiol 32, 251283.
  • Pérez-Reyes E (2003). Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83, 117161.
  • Philipp S, Trost C, Warnat J, Rautmann J, Himmerkus N, Schroth G, Kretz O, Nastainczyk W, Cavalie A, Hothi M & Flockerzi V (2000). TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J Biol Chem 275, 2396523972.
  • Schmitt R, Clozel J-P, Iberg N & Bühler FR (1995). Mibefradil reverts neointima formation after vascular injury in rats: possible role of the blockade of the T-type voltage-operated calcium channel arteriosclerosis. Thromb Vasc Biol 15, 11611165.
  • Schrier AD, Wang H, Talley EM, Perez-Reyes E & Barrett PQ (2001). α1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am J Physiol Cell Physiol 280, C265C272.
  • Scragg JS, Fearon IM, Boyle JP, Ball SG, Varadi G & Peers C (2005). Alzheimer's amyloid peptides mediate hypoxic up-regulation of L-type Ca2+ channels. FASEB J 19, 150152.
  • Segura F, Brioso MA, Gómez JF, Machado JD & Borges R (2000). Automatic analysis for amperometrical recordings of exocytosis. J Neurosci Methods 103, 151156.
  • Semenza GL (2004). Hydroxylation of HIF-1-oxygen sensing at the molecular level. Physiology 19, 176182.
  • Sen L & Smith TW (1994). T-type Ca2+ channels are abnormal in genetically determined cardiomyopathic hamster hearts. Circ Res 75, 149155.
  • Seta KA, Yuan Y, Spicer Z, Lu G, Bedard J, Ferguson TK, Pathrose P, Cole-Strauss A, Kaufhold A & Millhorn DE (2004). The role of calcium in hypoxia-induced signal transduction and gene expression. Cell Calcium 36, 331340.
  • Sjodin RA (1980). Contribution of Na/Ca transport to the resting membrane potential. J Gen Physiol 76, 99108.
  • Smirnov SV, Robertson TP, Ward JP & Aaronson PI (1994). Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells. Am J Physiol Heart Circ Physiol 266, H365H370.
  • Stea A, Jackson A, Macintyre L & Nurse CA (1995). Long-term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro. J Neurosci 15, 21922202.
  • Sun M-K & Reis DJ (1994). Hypoxia-activated Ca2+ currents in pacemaker neurons of rat rostral ventrolateral medulla in vitro. J Physiol 476, 101116.
  • Tabares L, Alés E, Lindau M & Alvarez de Toledo G (2001). Exocytosis of catecholamine (CA)-containing and CA-free granules in chromaffin cells. J Biol Chem 276, 3997439979.
  • Tang KS, Tse A & Tse FW (2005). Differential regulation of multiple populations of granules in rat adrenal chromaffin cells by culture duration and cyclic AMP. J Neurochem 92, 11261139.
  • Taylor SC, Batten TFC & Peers C (1999). Hypoxic enhancement of quantal catecholamines secretion. J Biol Chem 274, 3121731222.
  • Tesfai Y, Brereton HM & Barritt GJ (2001). A diacylglycerol-activated Ca2+ channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP-6 (transient receptor potential) protein. Biochem J 358, 717726.
  • Tsakiridou E, Bertollini L, De Curtis M, Avanzini G & Pape H-C (1995). Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 152, 31103117.
  • Wang J, Juhaszova M, Rubin LJ & Yuan XJ (1997). Hypoxia inhibits gene expression of voltage-gated K+ channel α subunits in pulmonary artery smooth muscle cells. J Clin Invest 100, 23472353.
  • Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL & Shimoda LA (2006). Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98, 15281537.
  • Wyatt CN, Wright C, Bee D & Peers C (1995). O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc Natl Acad Sci U S A 92, 295299.
  • Xu J & Tse FW (1999). Brefeldin A increases the quantal size and alters the kinetics of catecholamine release from rat adrenal chromaffin cells. J Biol Chem 274, 1909519102.