SEARCH

SEARCH BY CITATION

References

  • Aggelopoulos NC & Meissl H (2000). Responses of neurones of the rat suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions. J Physiol 523, 211222.
  • Arkin MS & Miller RF (1988). Synaptic inputs and morphology of sustained ON-ganglion cells in the mudpuppy retina. J Neurophysiol 60, 11431159.
  • Awatramani GB & Slaughter MM (2000). Origin of transient and sustained responses in ganglion cells of the retina. J Neurosci 20, 70877095.
  • Barlow HB & Levick WR (1969). Changes in the maintained discharge with adaptation level in the cat retina. J Physiol 202, 699718.
  • Belenky MA, Smeraski CA, Provencio I, Sollars PJ & Pickard GE (2003). Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460, 380393.
  • Berson DM, Dunn FA & Takao M (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 10701073.
  • Cleland BG & Levick WR (1974). Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol 240, 421456.
  • Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW & Gamlin PD (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749754.
  • Dkhissi-Benyahya O, Gronfier C, De Vanssay W, Flamant F & Cooper HM (2007). Modeling the role of mid-wavelength cones in circadian responses to light. Neuron 53, 677687.
  • Dunn FA & Berson DM (2002). Are intrinsically photosensitive retinal ganglion cells influenced by rods or cones? Association for Research in Vision and Ophthalmology Abstract no. 2982.
  • Ecker J, Guler A, Lucas RJ, & Hattar S (2007). Genetic Ablation of melanopsin-Containing Retinal Ganglion Cells Severely Attenuates Light-Dependent Physiological Functions. Association for Research in Vision and Ophthalmology Abstract no. 2989.
  • Fu Y, Zhong H, Wang MH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ & Yau KW (2005). Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci U S A 102, 1033910344.
  • Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW & Dacey DM (2007). Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47, 946954.
  • Gooley JJ, Lu J, Chou TC, Scammell TE & Saper CB (2001). Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4, 1165.
  • Gooley JJ, Lu J, Fischer D & Saper CB (2003). A broad role for melanopsin in nonvisual photoreception. J Neurosci 23, 70937106.
  • Hannibal J & Fahrenkrug J (2002). Melanopsin: a novel photopigment involved in the photoentrainment of the brain's biological clock? Ann Med 34, 401407.
  • Hannibal J, Hindersson P, Knudsen SM, Georg B & Fahrenkrug J (2002). The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22, RC191.
  • Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW & Berson DM (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497, 326349.
  • Hattar S, Liao HW, Takao M, Berson DM & Yau KW (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 10651070.
  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG & Yau KW (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 7681.
  • Johnson J, Sherry DM, Liu X, Fremeau Rt Jr, Seal RP, Edwards RH & Copenhagen DR (2004). Vesicular glutamate transporter 3 expression identifies glutamatergic amacrine cells in the rodent retina. J Comp Neurol 477, 386398.
  • Lucas RJ, Douglas RH & Foster RG (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4, 621626.
  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG & Yau KW (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245247.
  • Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ & Hankins MW (2005). Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741745.
  • Mizota A & Adachi-Usami E (2002). Effect of body temperature on electroretinogram of mice. Invest Ophthalmol Vis Sci 43, 37543757.
  • Morin LP, Blanchard JH & Provencio I (2003). Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465, 401416.
  • Mrosovsky N, Foster RG & Salmon PA (1999). Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol[A] 184, 423428.
  • Mrosovsky N & Hattar S (2003). Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 20, 989999.
  • Newman LA, Walker MT, Brown RL, Cronin TW & Robinson PR (2003). Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42, 1273412738.
  • Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB & Jegla T (2005). Illumination of the melanopsin signalling pathway. Science 307, 600604.
  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN & Hogenesch JB (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525527.
  • Panda S, Sato TK, Castrucci AM, Rollag MD, Degrip WJ, Hogenesch JB, Provencio I & Kay SA (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 22132216.
  • Pang JJ, Gao F & Wu SM (2004). Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma. J Physiol 558, 249262.
  • Perez-Leon JA, Warren EJ, Allen CN, Robinson DW & Brown RL (2006). Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci 24, 11171123.
  • Provencio I, Jiang G, De Grip WJ, Hayes WP & Rollag MD (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95, 340345.
  • Provencio I, Rollag MD & Castrucci AM (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493.
  • Pu M (2000). Physiological response properties of cat retinal ganglion cells projecting to suprachiasmatic nucleus. J Biol Rhythms 15, 3136.
  • Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I & Berson DM (2005). Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745749.
  • Rollag MD, Berson DM & Provencio I (2003). Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 18, 227234.
  • Roska B & Werblin F (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583587.
  • Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC & O'Hara BF (2002). Role of melanopsin in circadian responses to light. Science 298, 22112213.
  • Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM & Tosini G (2005). Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci 22, 31293136.
  • Sekaran S, Foster RG, Lucas RJ & Hankins MW (2003). Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13, 12901298.
  • Semo M, Peirson S, Lupi D, Lucas RJ, Jeffery G & Foster RG (2003). Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17, 17931801.
  • Slaughter MM & Miller RF (1981). 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182185.
  • Stone J & Fukuda Y (1974). Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. J Neurophysiol 37, 722748.
  • Takahashi JS, DeCoursey PJ, Bauman L & Menaker M (1984). Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308, 186188.
  • Trevino SG, Villazana-Espinoza ET, Muniz A & Tsin AT (2005). Retinoid cycles in the conedominated chicken retina. J Exp Biol 208, 41514157.
  • Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE & Van Gelder RN (2005). Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48, 987999.
  • Warren EJ, Allen CN, Brown RL & Robinson DW (2003). Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci 17, 17271735.
  • Wong KY & Berson DM (2005). Bipolar and amacrine inputs modulating ganglion-cell photoreceptors. Association for Research in Vision and Ophthalmology Abstract no. 2332.
  • Wong KY, Cohen ED & Dowling JE (2005a). Retinal bipolar cell input mechanisms in giant danio. II. Patch-clamp analysis of on bipolar cells. J Neurophysiol 93, 94107.
  • Wong KY & Dowling JE (2005). Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms. J Neurophysiol 94, 265272.
  • Wong KY, Dunn FA & Berson DM (2005b). Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48, 10011010.
  • Yoshimura T & Ebihara S (1996). Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+) mice. J Comp Physiol[A] 178, 797802.
  • Zhang DQ, Stone JF, Zhou T, Ohta H & McMahon DG (2004). Characterization of genetically labeled catecholamine neurons in the mouse retina. Neuroreport 15, 17611765.
  • Zhang DQ, Zhou TR & McMahon DG (2007). Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci 27, 692699.