• Armstrong ML, Dua A & Murrant CL (2007). Potassium initiates vasodilatation induced by a single skeletal muscle contraction in hamster cremaster muscle. J Physiol 581, 841852.
  • Bacchus A, Gamble G, Anderson D & Scott J (1981). Role of the myogenic response in exercise hyperemia. Microvasc Res 21, 92102.
  • Ballard RE, Watenpaugh DE, Breit GA, Murthy G, Holley DC & Hargens AR (1998). Leg intramuscular pressures during locomotion in humans. J Appl Physiol 84, 19761981.
  • Brock RW, Tschakovsky ME, Shoemaker JK, Halliwill JR, Joyner MJ & Hughson RL (1998). Effects of acetylcholine and nitric oxide on forearm blood flow at rest and after a single muscle contraction. J Appl Physiol 85, 22492254.
  • Buckwalter JB & Clifford PS (1999). Autonomic control of skeletal muscle blood flow at the onset of exercise. Am J Physiol Heart Circ Physiol 277, H1872H1877.
  • Burns WR, Cohen KD & Jackson WF (2004). K+-induced dilation of hamster cremasteric arterioles involves both the Na+/K+-ATPase and inward-rectifier K+ channels. Microcirculation 11, 279293.
  • Clifford PS & Hellsten Y (2004). Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol 97, 393403.
  • Clifford PS, Kluess HA, Hamann JJ, Buckwalter JB & Jasperse JL (2006). Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries. J Physiol 572, 561567.
  • Clifford PS, Valic Z, Naik JS & Buckwalter JB (2000). Effect of vecuronium on the release of acetylcholine after nerve stimulation. J Appl Physiol 89, 12491251.
  • Dawes GS (1941). The vaso-dilator action of potassium. J Physiol 99, 224238.
  • Gaskell WH (1878). Further researches on the vasomotor nerves of ordinary muscles. J Physiol 1, 262302.
    Direct Link:
  • Gorczynski RJ, Klitzman B & Duling BR (1978). Interrelations between contracting striated muscle and precapillary microvessels. Am J Physiol Heart Circ Physiol 235, H494H504.
  • Green S, Langberg H, Skovgaard D, Bulow J & Kjaer M (2000). Interstitial and arterial–venous [K+] in human calf muscle during dynamic exercise: effect of ischaemia and relation to muscle pain. J Physiol 529, 849861.
  • Hamann JJ, Buckwalter JB & Clifford PS (2004a). Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle. J Physiol 557, 10131020.
  • Hamann JJ, Buckwalter JB, Clifford PS & Shoemaker JK (2004b). Is the blood flow response to a single contraction determined by work performed? J Appl Physiol 96, 21462152.
  • Hnik P, Holas M, Krekule I, Kriz N, Mejsnar J, Smiesko V, Ujec E & Vyskocil F (1976). Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchange microelectrodes. Pflugers Arch 362, 8594.
  • Juel C, Pilegaard H, Nielsen JJ & Bangsbo J (2000). Interstitial K+ in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Reg Integ Comp Physiol 278, R400R406.
  • Kirby BS, Carlson RE, Markwald RR, Voyles WF & Dinenno FA (2007). Mechanical influences on skeletal muscle vascular tone in humans: insight into contraction-induced rapid vasodilatation. J Physiol 583, 861874.
  • Kjellmer I (1961). The role of potassium ions in exercise hyperaemia. Med Exp 5, 5660.
  • Knot HJ, Zimmerman PA & Nelson MT (1996). Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels. J Physiol 492, 419430.
  • Lombard JH & Stekiel WJ (1995). Responses of cremasteric arterioles of spontaneously hypertensive rats to changes in extracellular K+ concentration. Microcirculation 2, 355362.
  • Lott MEJ, Hogeman CS, Vickery L, Kunselman AR, Sinoway LI & MacLean DA (2001). Effects of dynamic exercise on mean blood velocity and muscle interstitial metabolite responses in humans. Am J Physiol Heart Circ Physiol 281, H1734H1741.
  • Marshall JM & Tandon HC (1984). Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat. J Physiol 350, 447459.
  • Mihok ML & Murrant CL (2004). Rapid biphasic arteriolar dilations induced by skeletal muscle contraction are dependent on stimulation characteristics. Can J Physiol Pharmacol 82, 282287.
  • Mohrman DE & Sparks HV (1974). Myogenic hyperemia following brief tetanus of canine skeletal muscle. Am J Physiol 227, 531535.
  • Naik J, Valic Z, Buckwalter JB & Clifford PS (1999). Rapid vasodilation in response to a brief tetanic muscle contraction. J Appl Physiol 87, 17411746.
  • Sejersted OM, Hargens AR, Kardel KR, Blom P, Jensen O & Hermansen L (1984). Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J Appl Physiol 56, 287295.
  • Sheriff DD, Rowell LB & Scher AM (1993). Is rapid rise in vascular conductance at onset of dynamic exercise due to muscle pump? Am J Physiol Heart Circ Physiol 265, H1227H1234.
  • Sobey CG & Faraci FM (2000). Knockout blow for channel identity crisis: vasodilation to potassium is mediated via Kir2.1. Circ Res 87, 8384.
  • Tschakovsky ME, Shoemaker JK & Hughson RL (1996). Vasodilation and muscle pump contribution to immediate exercise hyperemia. Am J Physiol Heart Circ Physiol 271, H1697H1701.
  • Valic Z, Hamann JJ, DeLorey DS, Kluess HA, Buckwalter JB & Clifford PS (2006). Is the blood flow response to contraction attributable to potassium? FASEB J 20, A1401.
  • VanTeeffelen JW & Segal SS (2006). Rapid dilation of arterioles with single contraction of hamster skeletal muscle. Am J Physiol Heart Circ Physiol 290, H119H127.
  • Welsh DG & Segal SS (1997). Coactivation of resistance vessels and muscle fibers with acetylcholine release from motor nerves. Am J Physiol Heart Circ Physiol 273, H156H163.
  • Wunsch SA, Muller-Delp J & Delp MD (2000). Time course of vasodilatory responses in skeletal muscle arterioles: role in hyperemia at onset of exercise. Am J Physiol Heart Circ Physiol 279, H1715H1723.