SEARCH

SEARCH BY CITATION

References

  • Aronson D, Boppart MD, Dufresne SD, Fielding RA & Goodyear LJ (1998). Exercise stimulates c-Jun NH2 kinase activity and c-Jun transcriptional activity in human skeletal muscle. Biochem Biophys Res Commun 251, 106110.
  • Balon TW, Zorzano A, Treadway JL, Goodman MN & Ruderman NB (1990). Effect of insulin on protein synthesis and degradation in skeletal muscle after exercise. Am J Physiol Endocrinol Metab 258, E92E97.
  • Bandyopadhyay G, Kanoh Y, Sajan MP, Standaert ML & Farese RV (2000). Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-λ on insulin-stimulated glucose transport in L6 myotubes. Endocrinology 141, 41204127.
  • Bandyopadhyay G, Standaert ML, Sajan MP, Karnitz LM, Cong L, Quon MJ & Farese RV (1999). Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-ζ. Mol Endocrinol 13, 17661772.
  • Beeson M, Sajan MP, Dizon M, Grebenev D, Gomez-Daspet J, Miura A, Kanoh Y, Powe J, Bandyopadhyay G, Standaert ML & Farese RV (2003). Activation of protein kinase C-ζ by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 52, 19261934.
  • Biolo G, Declan Fleming RY & Wolfe RR (1995). Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95, 811819.
  • Biolo G, Tipton KD, Klein S & Wolfe RR (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol Endocrinol Metab 273, E122E129.
  • Biolo G, Williams BD, Fleming RY & Wolfe RR (1999). Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48, 949957.
  • Bolster DR, Pikosky MA, Gaine PC, Martin W, Wolfe RR, Tipton KD, Maclean D, Maresh CM & Rodriguez NR (2005). Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise. Am J Physiol Endocrinol Metab 289, E678E683.
  • Bouzakri K, Zachrisson A, Al-Khalili L, Zhang BB, Koistinen HA, Krook A & Zierath JR (2006). siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metab 4, 8996.
  • Cartee GD, Young DA, Sleeper MD, Zierath J, Wallberg-henriksson H & Holloszy JO (1989). Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol Endocriol Metab 256, E494E499.
  • Chen HC, Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert M, Farese RV Jr & Farese RV (2002). Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-β-d-riboside (AICAR)-stimulated glucose transport. J Biol Chem 277, 2355423562.
  • Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR & Mandarino LJ (2000). Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105, 311320.
  • Davis TA & Karl IE (1986). Response of muscle protein turnover to insulin after acute exercise and training. Biochem J 240, 651657.
  • Fluckey JD, Knox M, Smith L, Dupont-Versteegden EE, Gaddy D, Tesch PA & Peterson CA (2006). Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway. Am J Physiol Endocrinol Metab 290, E1205E1211.
  • Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnbaum MJ, Witters LA, Thorell A & Goodyear LJ (2000). Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273, 11501155.
  • Garetto LP, Richter EA, Goodman MN & Ruderman NB (1984). Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol Endocrinol Metab 246, E471E475.
  • Goodyear LJ, Giorgino F, Balon TW, Condorelli G & Smith RJ (1995). Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol Endocrinol Metab 268, E987E995.
  • Hansen PA, Nolte LA, Chen MM & Holloszy JO (1998). Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol 85, 12181222.
  • Herbert TP, Kilhams GR, Batty IH & Proud CG (2000). Distinct signalling pathways mediate insulin and phorbol ester-stimulated eukaryotic initiation factor 4F assembly and protein synthesis in HEK 293 cells. J Biol Chem 275, 1124911256.
  • Hori H, Sasaoka T, Ishihara H, Wada T, Murakami S, Ishiki M & Kobayashi M (2002). Association of SH2-containing inositol phosphatase 2 with the insulin resistance of diabetic db/db mice. Diabetes 51, 23872394.
  • Howlett KF, Sakamoto K, Yu H, Goodyear LJ & Hargreaves M (2006). Insulin-stimulated insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity is enhanced in human skeletal muscle after exercise. Metabolism 55, 10461052.
  • Howlett KF, Sakamoto K, Hirshman MF, Aschenbach WG, Dow M, White MF & Goodyear LJ (2002). Insulin signaling after exercise in insulin receptor substrate-2-deficient mice. Diabetes 51, 479483.
  • Imamura T, Huang J, Usui I, Satoh H, Bever J & Olefsky JM (2003). Insulin-induced GLUT4 translocation involves protein kinase C-λ-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol 23, 48924900.
  • Jakobsen SN, Hardie DG, Morrice N & Tornqvist HE (2001). 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276, 4691246916.
  • Kanoh Y, Bandyopadhyay G, Sajan MP, Standaert ML & Farese RV (2001). Rosiglitazone, insulin treatment, and fasting correct defective activation of protein kinase C-ζ/λ by insulin in vastus lateralis muscles and adipocytes of diabetic rats. Endocrinology 142, 15951605.
  • Kanoh Y, Sajan MP, Bandyopadhyay G, Miura A, Standaert ML & Farese RV (2003). Defective activation of atypical protein kinase C ζ and λ by insulin and phosphatidylinositol-3,4,5-(PO4)3 in skeletal muscle of rats following high-fat feeding and streptozotocin-induced diabetes. Endocrinology 144, 947954.
  • Kim YB, Kotani K, Ciaraldi TP, Henry RR & Kahn BB (2003). Insulin-stimulated protein kinase C λ/ζ activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes 52, 19351942.
  • Kim YB, Nikoulina SE, Ciaraldi TP, Henry RR & Kahn BB (1999). Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest 104, 733741.
  • Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y, Miyake K, Sano W, Akimoto K, Ohno S & Kasuga M (1998). Requirement of atypical protein kinase cλ for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol 18, 69716982.
  • Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P & Parker PJ (1998). Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281, 20422045.
  • Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ & Flakoll PJ (2001). Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab 280, E982E993.
  • Lowry OH & Passonneau JV (1972). A Flexible System of Enzymatic Analysis. Academic Press, New York .
  • Lund S, Holman GD, Schmitz O & Pedersen O (1995). Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A 92, 58175821.
  • Mikines KJ, Sonne B, Farrell PA, Tronier B & Galbo H (1988). Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol Endocrinol Metab 254, E248E259.
  • Moeschel K, Beck A, Weigert C, Lammers R, Kalbacher H, Voelter W, Schleicher ED, Haring HU & Lehmann R (2004). Protein kinase C-ζ-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279, 2515725163.
  • Nielsen JN, Frosig C, Sajan MP, Miura A, Standaert ML, Graham DA, Wojtaszewski JF, Farese RV & Richter EA (2003). Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochem Biophys Res Commun 312, 11471153.
  • Perrini S, Henriksson J, Zierath JR & Widegren U (2004). Exercise-induced protein kinase C isoform-specific activation in human skeletal muscle. Diabetes 53, 2124.
  • Proud CG (2006). Regulation of protein synthesis by insulin. Biochem Soc Trans 34, 213216.
  • Proud CG (2007). Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403, 217234.
  • Richter EA, Garetto LP, Goodman MN & Ruderman NB (1982). Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J Clin Invest 69, 785793.
  • Richter EA, Mikines KJ, Galbo H & Kiens B (1989). Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol 66, 876885.
  • Richter EA, Vistisen B, Maarbjerg SJ, Sajan M, Farese RV & Kiens B (2004). Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. J Physiol 560, 909918.
  • Rose AJ, Michell BJ, Kemp BE & Hargreaves M (2004). Effect of exercise on protein kinase C activity and localization in human skeletal muscle. J Physiol 561, 861870.
  • Sajan MP, Rivas J, Li P, Standaert ML & Farese RV (2006). Repletion of atypical protein kinase C following RNA interferance–mediated depletion restores insulin–stimulated glucose transport. J Biol Chem 281, 1746617473.
  • Sakamoto K, Hirshman MF, Aschenbach WG & Goodyear LJ (2002). Contraction regulation of Akt in rat skeletal muscle. J Biol Chem 277, 1191011917.
  • Shepherd PR, Siddle K & Nave BT (1997). Is stimulation of class-1 phosphatidylinositol 3-kinase activity by insulin sufficient to activate pathways involved in glucose metabolism. Biochem Soc Trans 25, 978981.
  • Shepherd PR, Withers DJ & Siddle K (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333, 471490.
  • Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP & Farese RV (2001). Insulin and PIP3 activate PKC-ζ by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 40, 249255.
  • Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A & Farese RV (1999). Insulin activates protein kinases C-ζ and C-λ by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 274, 2530825316.
  • Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J & Farese RV (1997). Protein kinase C-ζ as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem 272, 3007530082.
  • Standaert ML, Ortmeyer HK, Sajan MP, Kanoh Y, Bandyopadhyay G, Hansen BC & Farese RV (2002). Skeletal muscle insulin resistance in obesity-associated type 2 diabetes in monkeys is linked to a defect in insulin activation of protein kinase C-ζ/λ/ι. Diabetes 51, 29362943.
  • Standaert ML, Sajan MP, Miura A, Kanoh Y, Chen HC, Farese RV Jr & Farese RV (2004). Insulin-induced activation of atypical protein kinase C, but not protein kinase B, is maintained in diabetic (ob/ob and Goto-Kakazaki) liver. Contrasting insulin signaling patterns in liver versus muscle define phenotypes of type 2 diabetic and high fat-induced insulin-resistant states. J Biol Chem 279, 2492924934.
  • Thorell A, Hirshman MF, Nygren J, Jorfeldt L, Wojtaszewski JF, Dufresne SD, Horton ES, Ljungqvist O & Goodyear LJ (1999). Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol Endocrinol Metab 277, E733E741.
  • Treadway JL, James DE, Burcel E & Ruderman NB (1989). Effect of exercise on insulin receptor binding and kinase activity in skeletal muscle. Am J Physiol Endocrinol Metab 256, E138E144.
  • Vollenweider P, Menard B & Nicod P (2002). Insulin resistance, defective insulin receptor substrate 2-associated phosphatidylinositol-3′ kinase activation, and impaired atypical protein kinase C (ζ/λ) activation in myotubes from obese patients with impaired glucose tolerance. Diabetes 51, 10521059.
  • Wang X, Flynn A, Waskiewicz AJ, Webb BL, Vries RG, Baines IA, Cooper JA & Proud CG (1998). The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 273, 93739377.
  • Wang X, Li W, Williams M, Terada N, Alessi DR & Proud CG (2001). Regulation of elongation factor 2 kinase by p90 (RSK1) and p70, S6 kinase. EMBO J 20, 43704379.
  • Wang L & Proud CG (2002a). Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ Res 91, 821829.
  • Wang L & Proud CG (2002b). Regulation of the phosphorylation of elongation factor 2 by MEK-dependent signalling in adult rat cardiomyocytes. FEBS Lett 531, 285289.
  • Wasserman DH, Geer RJ, Rice DE, Bracy D, Flakoll PJ, Brown LL, Hill JO & Abumrad NN (1991). Interaction of exercise and insulin action in humans. Am J Physiol Endocrinol Metab 260, E37E45.
  • Weigert C, Hennige AM, Brischmann T, Beck A, Moeschel K, Schauble M, Brodbeck K, Haring HU, Schleicher ED & Lehmann R (2005). The phosphorylation of SER318 of insulin receptor substrate 1 is not per se inhibitory in skeletal muscle cells, but is necessary to trigger the attenuation of the insulin-stimulated signal. J Biol Chem 280, 3739337399.
  • Wojtaszewski JF, Hansen BF, Gade J, Kiens B, Markuns JF, Goodyear LJ & Richter EA (2000). Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 49, 325331.
  • Wojtaszewski JF, Hansen BF, Kiens B & Richter EA (1997). Insulin signaling in human skeletal muscle: time course and effect of exercise. Diabetes 46, 17751781.
  • Wojtaszewski JF, Nielsen JN & Richter EA (2002). Invited review: effect of acute exercise on insulin signaling and action in humans. J Appl Physiol 93, 384392.
  • Yeh JI, Gulve EA, Rameh L & Birnbaum MJ (1995). The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem 270, 21072111.
  • Zorzano A, Balon TW, Garetto LP, Goodman MN & Ruderman NB (1985). Muscle α-aminoisobutyric acid transport after exercise: enhanced stimulation by insulin. Am J Physiol Endocrinol Metab 248, E546E552.