SEARCH

SEARCH BY CITATION

References

  • Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ & Kaczmarek LK (2003). Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci 23, 1168111691.
  • Bhattacharjee A & Kaczmarek LK (2005). For K+ channels, Na+ is the new Ca2+. Trends Neurosci 28, 422428.
  • Bhattacharjee A, Von Hehn CAA, Mei X, Joiner WJ & Kaczmarek LK (2005). Localization of the Na+-activated K+ channel slick in the rat central nervous system. J Comp Neurol 484, 8092.
  • Bischoff U, Vogel W & Safronov BV (1998). Na+-activated K+ channels in small dorsal root ganglion neurones of rat. J Physiol 510, 743754.
  • Buchanan JT (1993). Electrophysiological properties of identified classes of lamprey spinal neurons. J Neurophysiol 70, 23132325.
  • Cangiano L, Wallén P & Grillner S (2002). Role of apamin-sensitive KCa channels for reticulospinal synaptic transmission to motoneuron and for the afterhyperpolarization. J Neurophysiol 88, 289299.
  • Dale N (1993). A large, sustained Na+- and voltage-dependent K+ current in spinal neurons of the frog embryo. J Physiol 462, 349372.
  • Dryer SE (1994). Na+-activated K+ channels: a new family of large-conductance ion channels. Trends Neurosci 17, 155160.
  • Dryer SE (2003). Molecular identification of the Na+-activated K+ channel. Neuron 37, 727728.
  • El Manira A, Tegnér J & Grillner S (1994). Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. J Neurophysiol 72, 18521861.
  • Franceschetti S, Lavazza T, Curia G, Aracri P, Panzica F, Sancini G, Avanzini G & Magistretti J (2003). Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons. J Neurophysiol 89, 21012111.
  • Grillner S (2003). The motor infrastructure: From ion channels to neuronal networks. Nat Rev Neurosci 4, 573586.
  • Grillner S, Wallén P, Hill R, Cangiano L & El Manira A (2001). Ion channels of importance for the locomotor pattern generation in the lamprey brainstem–spinal cord. J Physiol 533, 2330.
  • Gustafsson B (1974). Afterhyperpolarization and the control of repetitive firing in spinal neurones of the cat. Acta Physiol Scand Suppl 416, 147.
  • Hess D & El Manira A (2001). Characterization of a high-voltage-activated IA current with a role in spike timing and locomotor pattern generation. Proc Natl Acad Sci U S A 98, 52765281.
  • Hess D, Nanou E & El Manira A (2007). Characterization of Na+-activated K+ currents in larval lamprey spinal cord neurons. J Neurophysiol 97, 34843493.
  • Hill RH, Århem P & Grillner S (1985). Ionic mechanisms of 3 types of functionally different neurons in the lamprey spinal cord. Brain Res 358, 4052.
  • Hill R, Matsushima T, Schotland J & Grillner S (1992). Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. Neuroreport 3, 943945.
  • Hill RH, Svensson E, Dewael Y & Grillner S (2003). 5-HT inhibits N-type but not L-type Ca2+ channels via 5-HT1A receptors in lamprey spinal neurons. Eur J Neurosci 18, 29192924.
  • Hille B (1972). The permeability of the sodium channel to metal cations in myelinated nerve. J Gen Physiol 59, 637658.
  • Kernell D (1965). The limits of firing frequency in cat lumbosacral motoneurons possessing different time course of afterhyperpolarization. Acta Physiol Scand 65, 87100.
  • Kettunen P, Hess D & El Manira A (2003). mGluR1, but not mGluR5, mediates depolarization of spinal cord neurons by blocking a leak current. J Neurophysiol 90, 23412348.
  • Kettunen P, Krieger P, Hess D & El Manira A (2002). Signaling mechanisms of metabotropic glutamate receptor 5 subtype and its endogenous role in a locomotor network. J Neurosci 22, 18681873.
  • Kim U & McCormick DA (1998). Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro. J Neurophysiol 80, 12221235.
  • Koh DS, Jonas P & Vogel W (1994). Na+-activated K+ channels localized in the nodal region of myelinated axons of Xenopus. J Physiol 479, 183197.
  • Krieger P, El Manira A & Grillner S (1996). Activation of pharmacologically distinct metabotropic glutamate receptors depresses reticulospinal-evoked monosynaptic EPSPs in the lamprey spinal cord. J Neurophysiol 76, 38343841.
  • Krieger P, Hellgren-Kotaleski J, Kettunen P & El Manira A (2000). Interaction between metabotropic and ionotropic glutamate receptors regulates neuronal network activity. J Neurosci 20, 53825391.
  • Lamotte d'Incamps B, Hess D & El Manira A (2004). Control of the temporal fidelity of synaptic transmission by a presynaptic high voltage-activated transient K+ current. Eur J Neurosci 19, 32023210.
  • Madison DV & Nicoll RA (1984). Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354, 319331.
  • Martin MM (2002). Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming. J Neurophysiol 88, 24632476.
  • Matsushima T, Tegnér J, Hill RH & Grillner S (1993). GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons. J Neurophysiol 70, 26062619.
  • Meer DP & Buchanan JT (1992). Apamin reduces the late afterhyperpolarization of lamprey spinal neurons, with little effect on fictive swimming. Neurosci Lett 143, 14.
  • Morita K, David G, Barrett JN & Barrett EF (1993). Posttetanic hyperpolarization produced by electrogenic Na+-K+ pump in lizard axons impaled near their motor terminals. J Neurophysiol 70, 18741884.
  • Parker D, Hill R & Grillner S (1996). Electrogenic pump and a Ca2+- dependent K+ conductance contribute to a posttetanic hyperpolarization in lamprey sensory neurons. J Neurophysiol 76, 540553.
  • Safronov BV & Vogel W (1996). Properties and functions of Na+-activated K+ channels in the soma of rat motoneurones. J Physiol 497, 727734.
  • Sah P & Davies P (2000). Calcium-activated potassium currents in mammalian neurons. Clin Exp Pharmacol Physiol 27, 657663.
  • Sah P & Faber ES (2002). Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66, 345353.
  • Schotland J, Shupliakov O, Wikström M, Brodin L, Srinivasan M, You ZB, Herrera-Marschitz M, Zhang W, Hökfelt T & Grillner S (1995). Control of lamprey locomotor neurons by colocalized monoamine transmitters. Nature 374, 266268.
  • Schwindt PC & Calvin WH (1973). Nature of conductances underlying rhythmic firing in cat spinal motoneurons. J Neurophysiol 36, 955973.
  • Scuri R, Mozzachiodi R & Brunelli M (2002). Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech. J Neurophysiol 88, 24902500.
  • Tegnér J, Matsushima T, El Manira A & Grillner S (1993). The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors. J Neurophysiol 69, 647657.
  • Thompson SM & Prince DA (1986). Activation of electrogenic sodium pump in hippocampal CA1 neurons following glutamate-induced depolarization. J Neurophysiol 56, 507522.
  • Uchino S, Wada H, Honda S, Hirasawa T, Yanai S, Nakamura Y, Ondo Y & Kohsaka S (2003). Slo2 sodium-activated K+ channels bind to the PDZ domain of PSD-95. Biochem Biophys Res Commun 310, 11401147.
  • Wallén P, Buchanan JT, Grillner S, Hill RH, Christenson J & Hökfelt T (1989a). Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. J Neurophysiol 61, 759768.
  • Wallén P, Christenson J, Brodin L, Hill R, Lansner A & Grillner S (1989b). Mechanisms underlying the serotonergic modulation of the spinal circuitry for locomotion in lamprey. Prog Brain Res 80, 321327.
  • Wallén P & Grillner S (2003). One component of the slow afterhyperpolarization in lamprey neurons is mediated by a Na+ activated K+ current. Soc Neurosci Abs 53.52.
  • Wallén P, Hess D, El Manira A & Grillner S (2002). A slow non Ca2+ dependent afterhyperpolarization in lamprey neurons. Soc Neurosci Abs 546.549.
  • Wallén P, Robertson B, Bhattacharjee A, Kaczmarek LK & Grillner S (2005). KNa channels of the Slack subtype underlie the non-Ca component of the slow AHP in lamprey spinal neurons. Soc Neurosci Abs 152.155.
  • Wikström MA & El Manira A (1998). Calcium influx through N- and P/Q-type channels activate apamin-sensitive calcium-dependent potassium channels generating the late afterhyperpolarization in lamprey spinal neurons. Eur J Neurosci 10, 15281532.
  • Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M, Kaczmarek L, Crowder CM & Salkoff L (2003). The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765773.