SEARCH

SEARCH BY CITATION

References

  • Abraham ST & Shaw C (2006). Increased expression of δCaMKII isoforms in skeletal muscle regeneration: Implications in dystrophic muscle disease. J Cell Biochem 97, 621632.
  • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS & Yan Z (2005). Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280, 1958719593.
  • Allen DL & Leinwand LA (2002). Intracellular calcium and myosin isoform transitions. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter. J Biol Chem 277, 4532345330.
  • Allen DG & Westerblad H (2002). Role of phosphate and calcium stores in muscle fatigue. J Physiol 536, 657665.
  • Antipenko A, Frias JA, Parra J, Cadefau JA & Cusso R (1999). Effect of chronic electrostimulation of rabbit skeletal muscle on calmodulin level and protein kinase activity. Int J Biochem Cell Biol 31, 303310.
  • Baar K (2004). Involvement of PPARγ co-activator-1, nuclear respiratory factors 1 and 2, and PPARα in the adaptive response to endurance exercise. Proc Nutr Soc 63, 269273.
  • Baar K, Nader G & Bodine S (2006). Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays Biochem 42, 6174.
  • Bayer KU, Harbers K & Schulman H (1998). αKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J 17, 55985605.
  • Bayer KU & Schulman H (2001). Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 289, 917923.
  • Booth FW, Nicholson WF & Watson PA (1982). Influence of muscle use on protein synthesis and degradation. Exerc Sport Sci Rev 10, 2748.
  • Carrasco MA & Hidalgo C (2006). Calcium microdomains and gene expression in neurons and skeletal muscle cells. Cell Calcium 40, 575583.
  • Chakkalakal JV, Michel SA, Chin ER, Michel RN & Jasmin BJ (2006). Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet 15, 14231435.
  • Chin ER (2004). The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc 63, 279286.
  • Chin ER (2005). Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99, 414423.
  • Chin ER, Grange RW, Viau F, Simard AR, Humphries C, Shelton J, Bassel-Duby R, Williams RS & Michel RN (2003). Alterations in slow-twitch muscle phenotype in transgenic mice overexpressing the Ca2+ buffering protein parvalbumin. J Physiol 547, 649663.
  • Damiani E, Angelini C, Pelosi M, Sacchetto R, Bortoloso E & Margreth A (1996). Skeletal muscle sarcoplasmic reticulum phenotype in myotonic dystrophy. Neuromuscul Disord 6, 3347.
  • Damiani E, Sacchetto R & Margreth A (2000). Variation of phospholamban in slow-twitch muscle sarcoplasmic reticulum between mammalian species and a link to the substrate specificity of endogenous Ca2+-calmodulin-dependent protein kinase. Biochim Biophys Acta 1464, 231241.
  • Dela F, Mikines KJ, Von Linstow M, Secher NH & Galbo H (1992). Effect of training on insulin-mediated glucose uptake in human muscle. Am J Physiol Endocrinol Metab 263, E1134E1143.
  • Esterbauer H, Oberkofler H, Krempler F & Patsch W (1999). Human peroxisome proliferator activated receptor γ coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62, 98102.
  • Flück M, Booth FW & Waxham MN (2000a). Skeletal muscle CaMKII enriches in nuclei and phosphorylates myogenic factor SRF at multiple sites. Biochem Biophys Res Commun 270, 488494.
  • Flück M, Waxham MN, Hamilton MT & Booth FW (2000b). Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 88, 352358.
  • Freyssenet D, Irrcher I, Connor MK, Di Carlo M & Hood DA (2004). Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells. Am J Physiol Cell Physiol 286, C1053C1061.
  • Frøsig C, Jørgensen SB, Hardie DG, Richter EA & Wojtaszewski JF (2004). 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 286, E411E417.
  • Frøsig C, Rose AJ, Treebak JT, Kiens B, Richter EA & Wojtaszewski JFP (2007). Effects of endurance exercise training on insulin signalling in human skeletal muscle – Interactions at the level of PI3-K, Akt and AS160. Diabetes (in press).
  • Garcia-Roves PM, Huss J & Holloszy JO (2006). Role of calcineurin in exercise-induced mitochondrial biogenesis. Am J Physiol Endocrinol Metab 290, E1172E1179.
  • Gollnick PD, Piehl K & Saltin B (1974). Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241, 4557.
  • Halseth AE, O'Doherty RM, Printz RL, Bracy DP, Granner DK & Wasserman DH (2000). Role of Ca2+ fluctuations in L6 myotubes in the regulation of the hexokinase II gene. J Appl Physiol 88, 669673.
  • Hashimoto T, Hussien R, Oommen S, Gohil K & Brooks GA (2007). Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J (in press).
  • Hawley JA, Hargreaves M & Zierath JR (2006). Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays Biochem 42, 112.
  • Hawley JA & Houmard JA (2004). Preventing insulin resistance through exercise: a cellular approach. Med Sci Sports Exerc 36, 11871190.
  • Heidenreich O, Neininger A, Schratt G, Zinck R, Cahill MA, Engel K, Kotlyarov A, Kraft R, Kostka S, Gaestel M & Nordheim A (1999). MAPKAP kinase 2 phosphorylates serum response factor in vitro and in vivo. J Biol Chem 274, 1443414443.
  • Holloszy JO & Booth FW (1976). Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38, 273291.
  • Hood DA, Irrcher I, Ljubicic V & Joseph AM (2006). Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209, 22652275.
  • Hook SS & Means AR (2001). Ca2+/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41, 471505.
  • Huang YC, Dennis RG & Baar K (2006). Cultured slow vs. fast skeletal muscle cells differ in physiology and responsiveness to stimulation. Am J Physiol Cell Physiol 291, C11C17.
  • Inashima S, Matsunaga S, Yasuda T & Wada M (2003). Different time course of changes in sarcoplasmic reticulum and myosin isoforms in rat soleus muscle at early stage of hyperthyroidism. Acta Physiol Scand 180, 7987.
  • Irrcher I & Hood DA (2004). Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells. J Appl Physiol 97, 22072213.
  • Jørgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JF & Richter EA (2007). Role of α2-AMPK in basal, training- and AICAR-induced GLUT4, hexokinase II and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 292, E331E339.
  • Jørgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA & Pilegaard H (2005). Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 19, 11461148.
  • Juretić N, Urzúa U, Munroe DJ, Jaimovich E & Riveros N (2007). Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol 210, 819830.
  • Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK & Neufer PD (2001). Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15, 27482750.
  • Kiens B (2006). Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86, 205243.
  • Kiens B, Essen-Gustavsson B, Christensen NJ & Saltin B (1993). Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 469, 459478.
  • Kristiansen S, Gade J, Wojtaszewski JF, Kiens B & Richter EA (2000). Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol 89, 11511158.
  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B & Gautel M (2005). The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 15991603.
  • Lewis SE, Anderson P & Goldspink DF (1982). The effects of calcium on protein turnover in skeletal muscles of the rat. Biochem J 204, 257264.
  • Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, Nordheim A & Olson EN (2005). Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 102, 10821087.
  • Liu Y, Cseresnyes Z, Randall WR & Schneider MF (2001). Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol 155, 2739.
  • Liu Y, Randall WR & Schneider MF (2005). Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle. J Cell Biol 168, 887897.
  • Mahoney DJ, Parise G, Melov S, Safdar A & Tarnopolsky MA (2005). Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19, 14981500.
  • McGee SL, Sparling D, Olson AL & Hargreaves M (2006). Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J 20, 348349.
  • McKinsey TA, Zhang CL, Lu J & Olson EN (2000a). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106111.
  • McKinsey TA, Zhang CL & Olson EN (2000b). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97, 1440014405.
  • Nelson BD, Luciakova K, Li R & Betina S (1995). The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim Biophys Acta 1271, 8591.
  • Nori A, Lin PJ, Cassetti A, Villa A, Bayer KU & Volpe P (2003). Targeting of α-kinase-anchoring protein (αKAP) to sarcoplasmic reticulum and nuclei of skeletal muscle. Biochem J 370, 873880.
  • Ojuka EO, Jones TE, Han DH, Chen M & Holloszy JO (2003). Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17, 675681.
  • Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M & Holloszy JO (2002). Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca2+. Am J Physiol Endocrinol Metab 282, E1008E1013.
  • Otani K, Polonsky KS, Holloszy JO & Han DH (2007). Inhibition of calpain results in impaired contraction-stimulated GLUT4 translocation in skeletal muscle. Am J Physiol Endocrinol Metab 291, E544E548.
  • Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, Neilson JR, Liberatore CM, Yutzey KE, Crabtree GR, Tsika RW & Molkentin JD (2004). Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 279, 2619226200.
  • Pilegaard H, Ordway GA, Saltin B & Neufer PD (2000). Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279, E806E814.
  • Pilegaard H, Saltin B & Neufer PD (2003). Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546, 851858.
  • Pipes GC, Creemers EE & Olson EN (2006). The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20, 15451556.
  • Racay P, Gregory P & Schwaller B (2006). Parvalbumin deficiency in fast-twitch muscles leads to increased ‘slow-twitch type’ mitochondria, but does not affect the expression of fiber specific proteins. FEBS J 273, 96108.
  • Richter EA, Cleland PJ, Rattigan S & Clark MG (1987). Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett 217, 232236.
  • Rivera VM, Miranti CK, Misra RP, Ginty DD, Chen RH, Blenis J & Greenberg ME (1993). A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol 13, 62606273.
  • Rose AJ, Broholm C, Kiillerich K, Finn SG, Proud CG, Rider MH, Richter EA & Kiens B (2005). Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol 569, 223228.
  • Rose AJ & Hargreaves M (2003). Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol 553, 303309.
  • Rose AJ, Kiens B & Richter EA (2006). Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol 574, 889903.
  • Schiaffino S & Serrano A (2002). Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 23, 569575.
  • Simmerman HK & Jones LR (1998). Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78, 921947.
  • Smith JA, Collins M, Grobler LA, Magee CJ & Ojuka EO (2007). Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo. Am J Physiol Endocrinol Metab 292, E413420.
  • Song Q, Young KB, Chu G, Gulick J, Gerst M, Grupp IL, Robbins J & Kranias EG (2004). Overexpression of phospholamban in slow-twitch skeletal muscle is associated with depressed contractile function and muscle remodeling. FASEB J 18, 974976.
  • Tang H, Macpherson P, Argetsinger LS, Cieslak D, Suhr ST, Carter-Su C & Goldman D (2004). CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes. Cell Signal 16, 551563.
  • Tothova J, Blaauw B, Pallfacchina G, Rudolf R, Argentini C, Reggani C & Schiaffino S (2006). NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J Cell Sci 119, 16041611.
  • Viguerie N, Clement K, Barbe P, Courtine M, Benis A, Larrouy D, Hanczar B, Pelloux V, Poitou C, Khalfallah Y, Barsh GS, Thalamas C, Zucker JD & Langin D (2006). In vivo epinephrine-mediated regulation of gene expression in human skeletal muscle. J Clin Endocrinol Metab 89, 20002014.
  • Widegren U, Jiang XJ, Krook A, Chibalin AV, Björnholm M, Tally M, Roth RA, Henriksson J, Wallberg-Henriksson H & Zierath JR (1998). Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 12, 13791389.
  • Williams RS, Garcia-Moll M, Mellor J, Salmons S & Harlan W (1987). Adaptation of skeletal muscle to increased contractile activity. Expression nuclear genes encoding mitochondrial proteins. J Biol Chem 262, 27642767.
  • Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA & Kiens B (2000). Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528, 221226.
  • Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE & Holloszy JO (2007). Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. J Biol Chem 282, 194199.
  • Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R & Williams RS (2002). Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296, 349352.
  • Zheng Z, Wang ZM & Delbono O (2004). Ca2+ calmodulin kinase and calcineurin mediate IGF-1-induced skeletal muscle dihydropyridine receptor α1S transcription. J Membr Biol 197, 101112.