Similarity of polygenic profiles limits the potential for elite human physical performance

Authors


  • This paper has online supplemental material.

Corresponding author A. G. Williams: Institute for Biophysical and Clinical Research into Human Movement, Manchester Metropolitan University, Hassall Road, Alsager, Cheshire ST7 2DF, UK. Email: a.g.williams@mmu.ac.uk

Abstract

Human physical capability is influenced by many environmental and genetic factors, and it is generally accepted that physical capability phenotypes are highly polygenic. However, the ways in which relevant polymorphisms combine to influence the physical capability of individuals and populations are unknown. Initially, the literature was searched to identify associations between 23 genetic polymorphisms and human endurance phenotypes. Next, typical genotype frequencies of those polymorphisms in the general population were obtained from suitable literature. Using probability calculations, we found only a 0.0005% chance of a single individual in the world having the ‘preferable’ form of all 23 polymorphisms. As the number of DNA variants shown to be associated with human endurance phenotypes continues to increase, the probability of any single individual possessing the ‘preferable’ form of each polymorphism will become even lower. However, with population turnover, the chance of such genetically gifted individuals existing increases. To examine the polygenic endurance potential of a human population, a ‘total genotype score’ (for the 23 polymorphisms) was calculated for each individual within a hypothetical population of 1000 000. There was considerable homogeneity in terms of genetic predisposition to high endurance potential, with 99% of people differing by no more than seven genotypes from the typical profile. Consequently, with population turnover world and Olympic records should improve even without further enhancement of environmental factors, as more ‘advantageous’ polygenic profiles occasionally, though rarely, emerge. More broadly, human potential appears limited by the similarity of polygenic profiles at both the ‘elite sport’ and ‘chronic disorder’ ends of the performance continuum.

Ancillary