During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level


Corresponding author C. Lundby: Copenhagen Muscle Research Center, Rigshospitalet, section 7652, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark. Email: lundby@idraet.au.dk


To test the hypothesis that the increased sympathetic tonus elicited by chronic hypoxia is needed to match O2 delivery with O2 demand at the microvascular level eight male subjects were investigated at 4559 m altitude during maximal exercise with and without infusion of ATP (80 μg (kg body mass)−1 min−1) into the right femoral artery. Compared to sea level peak leg vascular conductance was reduced by 39% at altitude. However, the infusion of ATP at altitude did not alter femoral vein blood flow (7.6 ± 1.0 versus 7.9 ± 1.0 l min−1) and femoral arterial oxygen delivery (1.2 ± 0.2 versus 1.3 ± 0.2 l min−1; control and ATP, respectively). Despite the fact that with ATP mean arterial blood pressure decreased (106.9 ± 14.2 versus 83.3 ± 16.0 mmHg, P < 0.05), peak cardiac output remained unchanged. Arterial oxygen extraction fraction was reduced from 85.9 ± 5.3 to 72.0 ± 10.2% (P < 0.05), and the corresponding venous O2 content was increased from 25.5 ± 10.0 to 46.3 ± 18.5 ml l−1 (control and ATP, respectively, P < 0.05). With ATP, leg arterial–venous O2 difference was decreased (P < 0.05) from 139.3 ± 9.0 to 116.9 ± 8.4−1 and leg inline image was 20% lower compared to the control trial (1.1 ± 0.2 versus 0.9 ± 0.1 l min−1) (P= 0.069). In summary, at altitude, some degree of vasoconstriction is needed to match O2 delivery with O2 demand. Peak cardiac output at altitude is not limited by excessive mean arterial pressure. Exercising leg inline image is not limited by restricted vasodilatation in the altitude-acclimatized human.